IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2007.11781.html
   My bibliography  Save this paper

Relative wealth concerns with partial information and heterogeneous priors

Author

Listed:
  • Chao Deng
  • Xizhi Su
  • Chao Zhou

Abstract

We establish a Nash equilibrium in a market with $ N $ agents with the performance criteria of relative wealth level when the market return is unobservable. Each investor has a random prior belief on the return rate of the risky asset. The investors can be heterogeneous in both the mean and variance of the prior. By a separation result and a martingale argument, we show that the optimal investment strategy under a stochastic return rate model can be characterized by a fully-coupled linear FBSDE. Two sets of deep neural networks are used for the numerical computation to first find each investor's estimate of the mean return rate and then solve the FBSDEs. We establish the existence and uniqueness result for the class of FBSDEs with stochastic coefficients and solve the utility game under partial information using deep neural network function approximators. We demonstrate the efficiency and accuracy by a base-case comparison with the solution from the finite difference scheme in the linear case and apply the algorithm to the general case of nonlinear hidden variable process. Simulations of investment strategies show a herd effect that investors trade more aggressively under relativeness concerns. Statistical properties of the investment strategies and the portfolio performance, including the Sharpe ratios and the Variance Risk ratios (VRRs) are examed. We observe that the agent with the most accurate prior estimate is likely to lead the herd, and the effect of competition on heterogeneous agents varies more with market characteristics compared to the homogeneous case.

Suggested Citation

  • Chao Deng & Xizhi Su & Chao Zhou, 2020. "Relative wealth concerns with partial information and heterogeneous priors," Papers 2007.11781, arXiv.org.
  • Handle: RePEc:arx:papers:2007.11781
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2007.11781
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gilles-Edouard Espinosa & Nizar Touzi, 2015. "Optimal Investment Under Relative Performance Concerns," Mathematical Finance, Wiley Blackwell, vol. 25(2), pages 221-257, April.
    2. Anis Matoussi & Dylan Possamaï & Chao Zhou, 2015. "Robust Utility Maximization In Nondominated Models With 2bsde: The Uncertain Volatility Model," Mathematical Finance, Wiley Blackwell, vol. 25(2), pages 258-287, April.
    3. Abel, Andrew B, 1990. "Asset Prices under Habit Formation and Catching Up with the Joneses," American Economic Review, American Economic Association, vol. 80(2), pages 38-42, May.
    4. Agarwal, Vikas & Daniel, Naveen D. & Naik, Narayan Y., 2009. "Role of managerial incentives and discretion in hedge fund performance," CFR Working Papers 04-04, University of Cologne, Centre for Financial Research (CFR).
    5. Tomas Björk & Mark Davis & Camilla Landén, 2010. "Optimal investment under partial information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(2), pages 371-399, April.
    6. Gennotte, Gerard, 1986. "Optimal Portfolio Choice under Incomplete Information," Journal of Finance, American Finance Association, vol. 41(3), pages 733-746, July.
    7. Vikas Agarwal & Naveen D. Daniel & Narayan Y. Naik, 2009. "Role of Managerial Incentives and Discretion in Hedge Fund Performance," Journal of Finance, American Finance Association, vol. 64(5), pages 2221-2256, October.
    8. Sangmin Lee & Andrew Papanicolaou, 2016. "Pairs Trading Of Two Assets With Uncertainty In Co-Integration'S Level Of Mean Reversion," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(08), pages 1-36, December.
    9. Jana Bielagk & Arnaud Lionnet & Goncalo Dos Reis, 2015. "Equilibrium pricing under relative performance concerns," Papers 1511.04218, arXiv.org, revised Feb 2017.
    10. Qiu, Zhigang, 2017. "Equilibrium-Informed Trading with Relative Performance Measurement," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(5), pages 2083-2118, October.
    11. Stanley R. Pliska, 1986. "A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 371-382, May.
    12. Horst, Ulrich, 2005. "Stationary equilibria in discounted stochastic games with weakly interacting players," Games and Economic Behavior, Elsevier, vol. 51(1), pages 83-108, April.
    13. Andrew Papanicolaou, 2019. "Backward SDEs for control with partial information," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 208-248, January.
    14. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    15. Peter M. DeMarzo & Ron Kaniel & Ilan Kremer, 2008. "Relative Wealth Concerns and Financial Bubbles," The Review of Financial Studies, Society for Financial Studies, vol. 21(1), pages 19-50, January.
    16. Daniel Lacker & Thaleia Zariphopoulou, 2019. "Mean field and n‐agent games for optimal investment under relative performance criteria," Mathematical Finance, Wiley Blackwell, vol. 29(4), pages 1003-1038, October.
    17. Magill, Michael J. P. & Constantinides, George M., 1976. "Portfolio selection with transactions costs," Journal of Economic Theory, Elsevier, vol. 13(2), pages 245-263, October.
    18. Brown, Keith C & Harlow, W V & Starks, Laura T, 1996. "Of Tournaments and Temptations: An Analysis of Managerial Incentives in the Mutual Fund Industry," Journal of Finance, American Finance Association, vol. 51(1), pages 85-110, March.
    19. Dai, Min & Jin, Hanqing & Liu, Hong, 2011. "Illiquidity, position limits, and optimal investment for mutual funds," Journal of Economic Theory, Elsevier, vol. 146(4), pages 1598-1630, July.
    20. Brendle, Simon, 2006. "Portfolio selection under incomplete information," Stochastic Processes and their Applications, Elsevier, vol. 116(5), pages 701-723, May.
    21. M. H. A. Davis & A. R. Norman, 1990. "Portfolio Selection with Transaction Costs," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 676-713, November.
    22. Jörn Sass & Ulrich Haussmann, 2004. "Optimizing the terminal wealth under partial information: The drift process as a continuous time Markov chain," Finance and Stochastics, Springer, vol. 8(4), pages 553-577, November.
    23. Ioannis Karatzas & Xlng‐Xlong Xue, 1991. "A Note On Utility Maximization Under Partial Observations1," Mathematical Finance, Wiley Blackwell, vol. 1(2), pages 57-70, April.
    24. Basak, Suleyman, 2005. "Asset pricing with heterogeneous beliefs," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2849-2881, November.
    25. Detemple, Jerome B, 1986. "Asset Pricing in a Production Economy with Incomplete Information," Journal of Finance, American Finance Association, vol. 41(2), pages 383-391, June.
    26. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448, arXiv.org.
    27. Stephen J. Brown & William N. Goetzmann & James Park, 2001. "Careers and Survival: Competition and Risk in the Hedge Fund and CTA Industry," Journal of Finance, American Finance Association, vol. 56(5), pages 1869-1886, October.
    28. Michael Mania & Marina Santacroce, 2010. "Exponential utility maximization under partial information," Finance and Stochastics, Springer, vol. 14(3), pages 419-448, September.
    29. Richard Rouge & Nicole El Karoui, 2000. "Pricing Via Utility Maximization and Entropy," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 259-276, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goncalo dos Reis & Vadim Platonov, 2020. "Forward utility and market adjustments in relative investment-consumption games of many players," Papers 2012.01235, arXiv.org, revised Mar 2022.
    2. Nicole Bäuerle & Tamara Göll, 2023. "Nash equilibria for relative investors via no-arbitrage arguments," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(1), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Papanicolaou, 2018. "Backward SDEs for Control with Partial Information," Papers 1807.08222, arXiv.org.
    2. Guanxing Fu & Xizhi Su & Chao Zhou, 2020. "Mean Field Exponential Utility Game: A Probabilistic Approach," Papers 2006.07684, arXiv.org, revised Jul 2020.
    3. Wolfgang Putschögl & Jörn Sass, 2008. "Optimal consumption and investment under partial information," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 31(2), pages 137-170, November.
    4. Thai Nguyen & Mitja Stadje, 2020. "Utility maximization under endogenous pricing," Papers 2005.04312, arXiv.org, revised Mar 2024.
    5. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    6. Katia Colaneri & Stefano Herzel & Marco Nicolosi, 2021. "The value of knowing the market price of risk," Annals of Operations Research, Springer, vol. 299(1), pages 101-131, April.
    7. Bäuerle Nicole & Chen An, 2019. "Optimal retirement planning under partial information," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 37-55, December.
    8. Nicole Bauerle & An Chen, 2022. "Optimal investment under partial information and robust VaR-type constraint," Papers 2212.04394, arXiv.org, revised Sep 2023.
    9. Thomas Lim & Marie-Claire Quenez, 2010. "Portfolio optimization in a default model under full/partial information," Papers 1003.6002, arXiv.org, revised Nov 2013.
    10. Guanxing Fu & Chao Zhou, 2021. "Mean Field Portfolio Games," Papers 2106.06185, arXiv.org, revised Apr 2022.
    11. Guanxing Fu & Chao Zhou, 2023. "Mean field portfolio games," Finance and Stochastics, Springer, vol. 27(1), pages 189-231, January.
    12. Hening Liu, 2011. "Dynamic portfolio choice under ambiguity and regime switching mean returns," Post-Print hal-00781344, HAL.
    13. Michele Longo & Alessandra Mainini, 2016. "Learning And Portfolio Decisions For Crra Investors," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-21, May.
    14. Liu, Hening, 2011. "Dynamic portfolio choice under ambiguity and regime switching mean returns," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 623-640, April.
    15. Basak, Suleyman & Makarov, Dmitry, 2012. "Difference in interim performance and risk taking with short-sale constraints," Journal of Financial Economics, Elsevier, vol. 103(2), pages 377-392.
    16. Hansen, Simon Lysbjerg, 2015. "Cross-sectional asset pricing with heterogeneous preferences and beliefs," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 125-151.
    17. Michele Longo & Alessandra Mainini, 2015. "Learning and Portfolio Decisions for HARA Investors," Papers 1502.02968, arXiv.org.
    18. Basak, Suleyman, 2000. "A model of dynamic equilibrium asset pricing with heterogeneous beliefs and extraneous risk," Journal of Economic Dynamics and Control, Elsevier, vol. 24(1), pages 63-95, January.
    19. Agarwal, Vikas & Daniel, Naveen D. & Naik, Narayan Y., 2009. "Do hedge funds manage their reported returns?," CFR Working Papers 07-09, University of Cologne, Centre for Financial Research (CFR).
    20. Daniel Andrei & Bruce Carlin & Michael Hasler, 2019. "Asset Pricing with Disagreement and Uncertainty About the Length of Business Cycles," Management Science, INFORMS, vol. 67(6), pages 2900-2923, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2007.11781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.