IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2003.13317.html
   My bibliography  Save this paper

On the parabolic equation for portfolio problems

Author

Listed:
  • Dariusz Zawisza

Abstract

We consider a semilinear equation linked to the finite horizon consumption - investment problem under the stochastic factor framework and we prove it admits a classical solution and provide all obligatory estimates to successfully apply a verification reasoning. The paper covers the standard time additive utility, as well as the recursive utility framework. We extend existing results by considering more general factor dynamics including a non-trivial diffusion part and a stochastic correlation between assets and factors. In addition, this is the first paper which compromises many other optimization problems in finance, for example those related to the indifference pricing or the quadratic hedging problem. The extension of the result to the stochastic differential utility and robust portfolio optimization is provided as well. The essence of our paper lays in using improved stochastic methods to prove gradient estimates for suitable HJB equations with restricted control space.

Suggested Citation

  • Dariusz Zawisza, 2020. "On the parabolic equation for portfolio problems," Papers 2003.13317, arXiv.org, revised Oct 2020.
  • Handle: RePEc:arx:papers:2003.13317
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2003.13317
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Larry G. Epstein & Stanley E. Zin, 2013. "Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 12, pages 207-239, World Scientific Publishing Co. Pte. Ltd..
    2. Thaleia Zariphopoulou, 2001. "A solution approach to valuation with unhedgeable risks," Finance and Stochastics, Springer, vol. 5(1), pages 61-82.
    3. Vicky Henderson, 2002. "Valuation Of Claims On Nontraded Assets Using Utility Maximization," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 351-373, October.
    4. Benedetti, Giuseppe & Campi, Luciano, 2016. "Utility indifference valuation for non-smooth payoffs with an application to power derivatives," LSE Research Online Documents on Economics 63016, London School of Economics and Political Science, LSE Library.
    5. Mark Davis & Sebastien Lleo, 2011. "Jump-Diffusion Risk-Sensitive Asset Management II: Jump-Diffusion Factor Model," Papers 1102.5126, arXiv.org, revised Sep 2012.
    6. Marek Musiela & Thaleia Zariphopoulou, 2004. "An example of indifference prices under exponential preferences," Finance and Stochastics, Springer, vol. 8(2), pages 229-239, May.
    7. Matoussi, Anis & Xing, Hao, 2018. "Convex duality for Epstein-Zin stochastic differential utility," LSE Research Online Documents on Economics 82519, London School of Economics and Political Science, LSE Library.
    8. Mark H. A. Davis & Sébastien Lleo, 2014. "Risk-Sensitive Asset Management," World Scientific Book Chapters, in: RISK-SENSITIVE INVESTMENT MANAGEMENT, chapter 2, pages 17-40, World Scientific Publishing Co. Pte. Ltd..
    9. Belkacem Berdjane & Serguei Pergamenshchikov, 2013. "Optimal consumption and investment for markets with random coefficients," Finance and Stochastics, Springer, vol. 17(2), pages 419-446, April.
    10. Duffie, Darrel & Lions, Pierre-Louis, 1992. "PDE solutions of stochastic differential utility," Journal of Mathematical Economics, Elsevier, vol. 21(6), pages 577-606.
    11. Jakub Trybuła & Dariusz Zawisza, 2019. "Continuous-Time Portfolio Choice Under Monotone Mean-Variance Preferences—Stochastic Factor Case," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 966-987, August.
    12. Anis Matoussi & Hao Xing, 2018. "Convex duality for Epstein–Zin stochastic differential utility," Mathematical Finance, Wiley Blackwell, vol. 28(4), pages 991-1019, October.
    13. Holger Kraft & Thomas Seiferling & Frank Thomas Seifried, 2017. "Optimal consumption and investment with Epstein–Zin recursive utility," Finance and Stochastics, Springer, vol. 21(1), pages 187-226, January.
    14. Jean-Paul Laurent & Huyen Pham, 1999. "Dynamic programming and mean-variance hedging," Post-Print hal-03675953, HAL.
    15. Duffie, Darrell & Epstein, Larry G, 1992. "Stochastic Differential Utility," Econometrica, Econometric Society, vol. 60(2), pages 353-394, March.
    16. Holger Kraft & Frank Seifried & Mogens Steffensen, 2013. "Consumption-portfolio optimization with recursive utility in incomplete markets," Finance and Stochastics, Springer, vol. 17(1), pages 161-196, January.
    17. Hao Xing, 2017. "Consumption–investment optimization with Epstein–Zin utility in incomplete markets," Finance and Stochastics, Springer, vol. 21(1), pages 227-262, January.
    18. Duffie, Darrell & Epstein, Larry G, 1992. "Asset Pricing with Stochastic Differential Utility," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 411-436.
    19. M. R. Grasselli & T. R. Hurd, 2007. "Indifference Pricing and Hedging for Volatility Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(4), pages 303-317.
    20. Mark H. A. Davis & Sebastien Lleo, 2009. "Jump-Diffusion Risk-Sensitive Asset Management," Papers 0905.4740, arXiv.org, revised Mar 2010.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua Aurand & Yu-Jui Huang, 2019. "Epstein-Zin Utility Maximization on a Random Horizon," Papers 1903.08782, arXiv.org, revised May 2023.
    2. Dirk Becherer & Wilfried Kuissi-Kamdem & Olivier Menoukeu-Pamen, 2023. "Optimal consumption with labor income and borrowing constraints for recursive preferences," Working Papers hal-04017143, HAL.
    3. Zixin Feng & Dejian Tian, 2021. "Optimal consumption and portfolio selection with Epstein-Zin utility under general constraints," Papers 2111.09032, arXiv.org, revised May 2023.
    4. Li, Hanwu & Riedel, Frank & Yang, Shuzhen, 2022. "Optimal Consumption for Recursive Preferences with Local Substitution - the Case of Certainty," Center for Mathematical Economics Working Papers 670, Center for Mathematical Economics, Bielefeld University.
    5. Chen, Xingjiang & Ruan, Xinfeng & Zhang, Wenjun, 2021. "Dynamic portfolio choice and information trading with recursive utility," Economic Modelling, Elsevier, vol. 98(C), pages 154-167.
    6. Shigeta, Yuki, 2020. "Gain/loss asymmetric stochastic differential utility," Journal of Economic Dynamics and Control, Elsevier, vol. 118(C).
    7. David Hobson & Martin Herdegen & Joseph Jerome, 2021. "The Infinite Horizon Investment-Consumption Problem for Epstein-Zin Stochastic Differential Utility," Papers 2107.06593, arXiv.org.
    8. Shigeta, Yuki, 2022. "Quasi-hyperbolic discounting under recursive utility and consumption–investment decisions," Journal of Economic Theory, Elsevier, vol. 204(C).
    9. Zhao, Hui & Wang, Suxin, 2022. "Optimal investment and benefit adjustment problem for a target benefit pension plan with Cobb-Douglas utility and Epstein-Zin recursive utility," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1166-1180.
    10. Martin Herdegen & David Hobson & Joseph Jerome, 2021. "Proper solutions for Epstein-Zin Stochastic Differential Utility," Papers 2112.06708, arXiv.org.
    11. Michael Monoyios & Oleksii Mostovyi, 2022. "Stability of the Epstein-Zin problem," Papers 2208.09895, arXiv.org, revised Apr 2023.
    12. Aït-Sahalia, Yacine & Matthys, Felix, 2019. "Robust consumption and portfolio policies when asset prices can jump," Journal of Economic Theory, Elsevier, vol. 179(C), pages 1-56.
    13. Campani, Carlos Heitor & Garcia, René, 2019. "Approximate analytical solutions for consumption/investment problems under recursive utility and finite horizon," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 364-384.
    14. Holger Kraft & Thomas Seiferling & Frank Thomas Seifried, 2017. "Optimal consumption and investment with Epstein–Zin recursive utility," Finance and Stochastics, Springer, vol. 21(1), pages 187-226, January.
    15. Kraft, Holger & Munk, Claus & Weiss, Farina, 2022. "Bequest motives in consumption-portfolio decisions with recursive utility," Journal of Banking & Finance, Elsevier, vol. 138(C).
    16. Marcelo Lewin & Carlos Heitor Campani, 2023. "Constrained portfolio strategies in a regime-switching economy," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(1), pages 27-59, March.
    17. Yaroslav Melnyk & Johannes Muhle‐Karbe & Frank Thomas Seifried, 2020. "Lifetime investment and consumption with recursive preferences and small transaction costs," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 1135-1167, July.
    18. Fahrenwaldt, Matthias Albrecht & Jensen, Ninna Reitzel & Steffensen, Mogens, 2020. "Nonrecursive separation of risk and time preferences," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 95-108.
    19. Dietmar Leisen & Eckhard Platen, 2017. "Investing for the Long Run," Papers 1705.03929, arXiv.org.
    20. Huiwen Yan & Gechun Liang & Zhou Yang, 2015. "Indifference Pricing and Hedging in a Multiple-Priors Model with Trading Constraints," Papers 1503.08969, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2003.13317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.