IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1907.10578.html
   My bibliography  Save this paper

Deep Learning-Based Least Square Forward-Backward Stochastic Differential Equation Solver for High-Dimensional Derivative Pricing

Author

Listed:
  • Jian Liang
  • Zhe Xu
  • Peter Li

Abstract

We propose a new forward-backward stochastic differential equation solver for high-dimensional derivatives pricing problems by combining deep learning solver with least square regression technique widely used in the least square Monte Carlo method for the valuation of American options. Our numerical experiments demonstrate the efficiency and accuracy of our least square backward deep neural network solver and its capability to provide accurate prices for complex early exercise derivatives such as callable yield notes. Our method can serve as a generic numerical solver for pricing derivatives across various asset groups, in particular, as an efficient means for pricing high-dimensional derivatives with early exercises features.

Suggested Citation

  • Jian Liang & Zhe Xu & Peter Li, 2019. "Deep Learning-Based Least Square Forward-Backward Stochastic Differential Equation Solver for High-Dimensional Derivative Pricing," Papers 1907.10578, arXiv.org, revised Oct 2020.
  • Handle: RePEc:arx:papers:1907.10578
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1907.10578
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2017. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs," Papers 1710.07030, arXiv.org, revised Mar 2019.
    2. Ali Al-Aradi & Adolfo Correia & Danilo Naiff & Gabriel Jardim & Yuri Saporito, 2018. "Solving Nonlinear and High-Dimensional Partial Differential Equations via Deep Learning," Papers 1811.08782, arXiv.org.
    3. Haojie Wang & Han Chen & Agus Sudjianto & Richard Liu & Qi Shen, 2018. "Deep Learning-Based BSDE Solver for Libor Market Model with Application to Bermudan Swaption Pricing and Hedging," Papers 1807.06622, arXiv.org, revised Sep 2018.
    4. Barraquand, Jérôme & Martineau, Didier, 1995. "Numerical Valuation of High Dimensional Multivariate American Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(3), pages 383-405, September.
    5. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2019. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs (Forthcoming in Asia-Pacific Financial Markets)," CARF F-Series CARF-F-456, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    6. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2019. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for High dimensional BSDEs," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(3), pages 391-408, September.
    7. Jèôme Barraquand, 1995. "Numerical Valuation of High Dimensional Multivariate European Securities," Management Science, INFORMS, vol. 41(12), pages 1882-1891, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiawei Huo, 2023. "Finite Difference Solution Ansatz approach in Least-Squares Monte Carlo," Papers 2305.09166, arXiv.org, revised Nov 2023.
    2. Yajie Yu & Bernhard Hientzsch & Narayan Ganesan, 2020. "Backward Deep BSDE Methods and Applications to Nonlinear Problems," Papers 2006.07635, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiawei Huo, 2023. "Finite Difference Solution Ansatz approach in Least-Squares Monte Carlo," Papers 2305.09166, arXiv.org, revised Nov 2023.
    2. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen & Timo Welti, 2019. "Solving high-dimensional optimal stopping problems using deep learning," Papers 1908.01602, arXiv.org, revised Aug 2021.
    3. Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance ," Post-Print hal-03115503, HAL.
    4. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    5. Masaaki Fujii, 2020. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CARF F-Series CARF-F-497, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    6. Yuga Iguchi & Riu Naito & Yusuke Okano & Akihiko Takahashi & Toshihiro Yamada, 2021. "Deep Asymptotic Expansion: Application to Financial Mathematics," CIRJE F-Series CIRJE-F-1178, CIRJE, Faculty of Economics, University of Tokyo.
    7. Masaaki Fujii, 2019. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CIRJE F-Series CIRJE-F-1133, CIRJE, Faculty of Economics, University of Tokyo.
    8. Lorenc Kapllani & Long Teng, 2024. "A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations," Papers 2404.08456, arXiv.org.
    9. Philipp Grohs & Arnulf Jentzen & Diyora Salimova, 2022. "Deep neural network approximations for solutions of PDEs based on Monte Carlo algorithms," Partial Differential Equations and Applications, Springer, vol. 3(4), pages 1-41, August.
    10. Yoshifumi Tsuchida, 2023. "Control Variate Method for Deep BSDE Solver Using Weak Approximation," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 30(2), pages 273-296, June.
    11. Yuga Iguchi & Riu Naito & Yusuke Okano & Akihiko Takahashi & Toshihiro Yamada, 2021. "Deep Asymptotic Expansion with Weak Approximation ," CIRJE F-Series CIRJE-F-1168, CIRJE, Faculty of Economics, University of Tokyo.
    12. Akihiko Takahashi & Toshihiro Yamada, 2021. "Asymptotic Expansion and Deep Neural Networks Overcome the Curse of Dimensionality in the Numerical Approximation of Kolmogorov Partial Differential Equations with Nonlinear Coefficients," CIRJE F-Series CIRJE-F-1167, CIRJE, Faculty of Economics, University of Tokyo.
    13. Masaaki Fujii, 2019. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," Papers 1911.11501, arXiv.org, revised Nov 2020.
    14. Stefan Kremsner & Alexander Steinicke & Michaela Szölgyenyi, 2020. "A Deep Neural Network Algorithm for Semilinear Elliptic PDEs with Applications in Insurance Mathematics," Risks, MDPI, vol. 8(4), pages 1-18, December.
    15. Choi, So Eun & Jang, Hyun Jin & Lee, Kyungsub & Zheng, Harry, 2021. "Optimal market-Making strategies under synchronised order arrivals with deep neural networks," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    16. Masaaki Fujii, 2019. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CARF F-Series CARF-F-467, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    17. Stefan Kremsner & Alexander Steinicke & Michaela Szolgyenyi, 2020. "A deep neural network algorithm for semilinear elliptic PDEs with applications in insurance mathematics," Papers 2010.15757, arXiv.org, revised Dec 2020.
    18. Akihiko Takahashi & Yoshifumi Tsuchida & Toshihiro Yamada, 2021. "A New Efficient Approximation Scheme for Solving High-Dimensional Semilinear PDEs: Control Variate Method for Deep BSDE Solver," CIRJE F-Series CIRJE-F-1159, CIRJE, Faculty of Economics, University of Tokyo.
    19. Yuga Iguchi & Riu Naito & Yusuke Okano & Akihiko Takahashi & Toshihiro Yamada, 2021. "Deep Asymptotic Expansion: Application to Financial Mathematics(forthcoming in proceedings of IEEE CSDE 2021)," CARF F-Series CARF-F-523, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    20. Akihiko Takahashi & Yoshifumi Tsuchida & Toshihiro Yamada, 2021. "A new efficient approximation scheme for solving high-dimensional semilinear PDEs: control variate method for Deep BSDE solver," CARF F-Series CARF-F-504, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2022.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1907.10578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.