IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1901.09073.html
   My bibliography  Save this paper

Technological Parasitism

Author

Listed:
  • Mario Coccia

Abstract

Technological parasitism is a new theory to explain the evolution of technology in society. In this context, this study proposes a model to analyze the interaction between a host technology (system) and a parasitic technology (subsystem) to explain evolutionary pathways of technologies as complex systems. The coefficient of evolutionary growth of the model here indicates the typology of evolution of parasitic technology in relation to host technology: i.e., underdevelopment, growth and development. This approach is illustrated with realistic examples using empirical data of product and process technologies. Overall, then, the theory of technological parasitism can be useful for bringing a new perspective to explain and generalize the evolution of technology and predict which innovations are likely to evolve rapidly in society.

Suggested Citation

  • Mario Coccia, 2019. "Technological Parasitism," Papers 1901.09073, arXiv.org.
  • Handle: RePEc:arx:papers:1901.09073
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1901.09073
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antony Young, 2014. "1 + 1 = 3," Palgrave Macmillan Books, in: Brand Media Strategy, edition 0, chapter 0, pages 81-99, Palgrave Macmillan.
    2. Hall, Bronwyn H. & Jaffe, Adam B., 2018. "Measuring Science, Technology, and Innovation: A Review," Annals of Science and Technology Policy, now publishers, vol. 2(1), pages 1-74, March.
    3. Farmer, J. Doyne & Lafond, François, 2016. "How predictable is technological progress?," Research Policy, Elsevier, vol. 45(3), pages 647-665.
    4. Béla Nagy & J Doyne Farmer & Quan M Bui & Jessika E Trancik, 2013. "Statistical Basis for Predicting Technological Progress," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
    5. Sandén, Björn A. & Hillman, Karl M., 2011. "A framework for analysis of multi-mode interaction among technologies with examples from the history of alternative transport fuels in Sweden," Research Policy, Elsevier, vol. 40(3), pages 403-414, April.
    6. Dosi, Giovanni, 1988. "Sources, Procedures, and Microeconomic Effects of Innovation," Journal of Economic Literature, American Economic Association, vol. 26(3), pages 1120-1171, September.
    7. Magee, C.L. & Basnet, S. & Funk, J.L. & Benson, C.L., 2016. "Quantitative empirical trends in technical performance," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 237-246.
    8. Geoffrey M. Hodgson, 2002. "Darwinism in economics: from analogy to ontology," Journal of Evolutionary Economics, Springer, vol. 12(3), pages 259-281.
    9. Mario Coccia, 2006. "Classifications of innovations: Survey and future directions," CERIS Working Paper 200602, CNR-IRCrES Research Institute on Sustainable Economic Growth - Torino (TO) ITALY - former Institute for Economic Research on Firms and Growth - Moncalieri (TO) ITALY.
    10. Christian Schubert, 2014. "“Generalized Darwinism” and the quest for an evolutionary theory of policy-making," Journal of Evolutionary Economics, Springer, vol. 24(3), pages 479-513, July.
    11. Watanabe, Chihiro & Kanno, Genryo & Tou, Yuji, 2012. "Inside the learning dynamism inducing the resonance between innovation and high-demand consumption: A case of Japan's high-functional mobile phones," Technological Forecasting and Social Change, Elsevier, vol. 79(7), pages 1292-1311.
    12. Timothy F. Bresnahan & Robert J. Gordon, 1996. "The Economics of New Goods," NBER Books, National Bureau of Economic Research, Inc, number bres96-1, March.
    13. Giovanni Dosi, 2000. "Sources, Procedures, and Microeconomic Effects of Innovation," Chapters, in: Innovation, Organization and Economic Dynamics, chapter 2, pages 63-114, Edward Elgar Publishing.
    14. Chun-Chieh Wang & Hui-Yun Sung & Mu-Hsuan Huang, 2016. "Technological evolution seen from the USPC reclassifications," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 537-553, May.
    15. J. W. Stoelhorst, 2008. "The explanatory logic and ontological commitments of generalized Darwinism," Journal of Economic Methodology, Taylor & Francis Journals, vol. 15(4), pages 343-363.
    16. Hodgson, Geoffrey M. & Knudsen, Thorbjorn, 2006. "Why we need a generalized Darwinism, and why generalized Darwinism is not enough," Journal of Economic Behavior & Organization, Elsevier, vol. 61(1), pages 1-19, September.
    17. Carranza, Juan Esteban, 2010. "Product innovation and adoption in market equilibrium: The case of digital cameras," International Journal of Industrial Organization, Elsevier, vol. 28(6), pages 604-618, November.
    18. Rosenberg, Nathan, 1969. "The Direction of Technological Change: Inducement Mechanisms and Focusing Devices," Economic Development and Cultural Change, University of Chicago Press, vol. 18(1), pages 1-24, Part I Oc.
    19. Pistorius, C. W. I. & Utterback, J. M., 1997. "Multi-mode interaction among technologies," Research Policy, Elsevier, vol. 26(1), pages 67-84, March.
    20. Geoffrey Hodgson & Thorbjørn Knudsen, 2008. "In search of general evolutionary principles: Why Darwinism is too important to be left to the biologists," Journal of Bioeconomics, Springer, vol. 10(1), pages 51-69, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coccia, Mario, 2019. "The theory of technological parasitism for the measurement of the evolution of technology and technological forecasting," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 289-304.
    2. Dosi, Giovanni & Grazzi, Marco & Mathew, Nanditha, 2017. "The cost-quantity relations and the diverse patterns of “learning by doing”: Evidence from India," Research Policy, Elsevier, vol. 46(10), pages 1873-1886.
    3. Rahmeyer Fritz, 2013. "Schumpeter, Marshall, and Neo-Schumpeterian Evolutionary Economics: A Critical Stocktaking," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(1), pages 39-64, February.
    4. Zhang, Guanglu & McAdams, Daniel A. & Shankar, Venkatesh & Darani, Milad Mohammadi, 2017. "Modeling the evolution of system technology performance when component and system technology performances interact: Commensalism and amensalism," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 116-124.
    5. Singh, Anuraag & Triulzi, Giorgio & Magee, Christopher L., 2021. "Technological improvement rate predictions for all technologies: Use of patent data and an extended domain description," Research Policy, Elsevier, vol. 50(9).
    6. Christian Schubert, 2009. "Darwinism in Economics and the Evolutionary Theory of Policy-Making," Papers on Economics and Evolution 2009-10, Philipps University Marburg, Department of Geography.
    7. Mario Coccia, 2018. "Measurement of the evolution of technology: A new perspective," Papers 1803.08698, arXiv.org.
    8. Fritz Rahmeyer, 2010. "A Neo-Darwinian Foundation of Evolutionary Economics. With an Application to the Theory of the Firm," Discussion Paper Series 309, Universitaet Augsburg, Institute for Economics.
    9. Anuraag Singh & Giorgio Triulzi & Christopher L. Magee, 2020. "Technological improvement rate estimates for all technologies: Use of patent data and an extended domain description," Papers 2004.13919, arXiv.org.
    10. Spagano, Salvatore, 2021. "Generalized Darwinism: An Auxiliary Hypothesis," MPRA Paper 108829, University Library of Munich, Germany.
    11. Maxim Kotsemir & Alexander Abroskin & Dirk Meissner, 2013. "Innovation concepts and typology – an evolutionary discussion," HSE Working papers WP BRP 05/STI/2013, National Research University Higher School of Economics.
    12. Taalbi, Josef, 2017. "What drives innovation? Evidence from economic history," Research Policy, Elsevier, vol. 46(8), pages 1437-1453.
    13. Ad van den Oord & Arjen van Witteloostuijn, 2018. "A multi-level model of emerging technology: An empirical study of the evolution of biotechnology from 1976 to 2003," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-27, May.
    14. Hoppmann, Joern & Wu, Geng & Johnson, Jillian, 2021. "The impact of demand-pull and technology-push policies on firms’ knowledge search," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    15. Andersen, Allan Dahl & Markard, Jochen, 2020. "Multi-technology interaction in socio-technical transitions: How recent dynamics in HVDC technology can inform transition theories," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    16. Alfonso Ávila-Robinson & Kumiko Miyazaki, 2013. "Evolutionary paths of change of emerging nanotechnological innovation systems: the case of ZnO nanostructures," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(3), pages 829-849, June.
    17. Sofia Patsali, 2021. "University Procurement-led Innovation," GREDEG Working Papers 2021-13, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    18. Triulzi, Giorgio & Alstott, Jeff & Magee, Christopher L., 2020. "Estimating technology performance improvement rates by mining patent data," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    19. Jan Schnellenbach, 2015. "Does classical liberalism imply an evolutionary approach to policy-making?," Journal of Bioeconomics, Springer, vol. 17(1), pages 53-70, April.
    20. Li, George Yunxiong & Ascani, Andrea & Iammarino, Simona, 2024. "The material basis of modern technologies. A case study on rare metals," Research Policy, Elsevier, vol. 53(1).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1901.09073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.