IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1708.01665.html
   My bibliography  Save this paper

A Two Factor Forward Curve Model with Stochastic Volatility for Commodity Prices

Author

Listed:
  • Mark Higgins

Abstract

We describe a model for evolving commodity forward prices that incorporates three important dynamics which appear in many commodity markets: mean reversion in spot prices and the resulting Samuelson effect on volatility term structure, decorrelation of moves in different points on the forward curve, and implied volatility skew and smile. This model is a "forward curve model" - it describes the stochastic evolution of forward prices - rather than a "spot model" that models the evolution of the spot commodity price. Two Brownian motions drive moves across the forward curve, with a third Heston-like stochastic volatility process scaling instantaneous volatilities of all forward prices. In addition to an efficient numerical scheme for calculating European vanilla and early-exercise option prices, we describe an algorithm for Monte Carlo-based pricing of more generic derivative payoffs which involves an efficient approximation for the risk neutral drift that avoids having to simulate drifts for every forward settlement date required for pricing.

Suggested Citation

  • Mark Higgins, 2017. "A Two Factor Forward Curve Model with Stochastic Volatility for Commodity Prices," Papers 1708.01665, arXiv.org, revised Aug 2017.
  • Handle: RePEc:arx:papers:1708.01665
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1708.01665
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zolotko, Mikhail & Okhrin, Ostap, 2014. "Modelling the general dependence between commodity forward curves," Energy Economics, Elsevier, vol. 43(C), pages 284-296.
    2. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    3. Hilliard, Jimmy E. & Reis, Jorge, 1998. "Valuation of Commodity Futures and Options under Stochastic Convenience Yields, Interest Rates, and Jump Diffusions in the Spot," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(1), pages 61-86, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    2. Jilong Chen & Christian Ewald & Ruolan Ouyang & Sjur Westgaard & Xiaoxia Xiao, 2022. "Pricing commodity futures and determining risk premia in a three factor model with stochastic volatility: the case of Brent crude oil," Annals of Operations Research, Springer, vol. 313(1), pages 29-46, June.
    3. Bryant, Henry L. & Haigh, Michael S., 2003. "Comparing The Performances Of The Partial Equilibrium And Time-Series Approaches To Hedging," Working Papers 28580, University of Maryland, Department of Agricultural and Resource Economics.
    4. Moreno, Manuel & Novales, Alfonso & Platania, Federico, 2019. "Long-term swings and seasonality in energy markets," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1011-1023.
    5. Alvaro Cartea & Marcelo Figueroa & Helyette Geman, 2009. "Modelling Electricity Prices with Forward Looking Capacity Constraints," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(2), pages 103-122.
    6. Chiu, Mei Choi & Wong, Hoi Ying & Zhao, Jing, 2015. "Commodity derivatives pricing with cointegration and stochastic covariances," European Journal of Operational Research, Elsevier, vol. 246(2), pages 476-486.
    7. Gonzalo Cortazar & Simon Gutierrez & Hector Ortega, 2016. "Empirical Performance of Commodity Pricing Models: When is it Worthwhile to Use a Stochastic Volatility Specification?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(5), pages 457-487, May.
    8. repec:dau:papers:123456789/6782 is not listed on IDEAS
    9. Back, Janis & Prokopczuk, Marcel & Rudolf, Markus, 2013. "Seasonality and the valuation of commodity options," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 273-290.
    10. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    11. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2, July-Dece.
    12. Ma, Zonggang & Ma, Chaoqun & Wu, Zhijian, 2020. "Closed-form analytical solutions for options on agricultural futures with seasonality and stochastic convenience yield," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    13. Constantino Hevia & Ivan Petrella & Martin Sola, 2018. "Risk premia and seasonality in commodity futures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 853-873, September.
    14. Benjamin Tin Chun Cheng, 2017. "Pricing and Hedging of Long-Dated Commodity Derivatives," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2017.
    15. repec:dau:papers:123456789/876 is not listed on IDEAS
    16. Mirantes, Andrés García & Población, Javier & Serna, Gregorio, 2013. "The stochastic seasonal behavior of energy commodity convenience yields," Energy Economics, Elsevier, vol. 40(C), pages 155-166.
    17. Shuhua Chang & Xinyu Wang, 2015. "Modelling and Computation in the Valuation of Carbon Derivatives with Stochastic Convenience Yields," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-35, May.
    18. Gourieroux, C. & Monfort, A. & Sufana, R., 2010. "International money and stock market contingent claims," Journal of International Money and Finance, Elsevier, vol. 29(8), pages 1727-1751, December.
    19. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    20. Iván Blanco, Juan Ignacio Peña, and Rosa Rodriguez, 2018. "Modelling Electricity Swaps with Stochastic Forward Premium Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    21. repec:dau:papers:123456789/5470 is not listed on IDEAS
    22. Juri Hinz & Tanya Tarnopolskaya & Jeremy Yee, 2020. "Efficient algorithms of pathwise dynamic programming for decision optimization in mining operations," Annals of Operations Research, Springer, vol. 286(1), pages 583-615, March.
    23. de Jong, C.M. & Huisman, R., 2002. "Option Formulas for Mean-Reverting Power Prices with Spikes," ERIM Report Series Research in Management ERS-2002-96-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1708.01665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.