IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1606.00142.html
   My bibliography  Save this paper

Model selection consistency from the perspective of generalization ability and VC theory with an application to Lasso

Author

Listed:
  • Ning Xu
  • Jian Hong
  • Timothy C. G. Fisher

Abstract

Model selection is difficult to analyse yet theoretically and empirically important, especially for high-dimensional data analysis. Recently the least absolute shrinkage and selection operator (Lasso) has been applied in the statistical and econometric literature. Consis- tency of Lasso has been established under various conditions, some of which are difficult to verify in practice. In this paper, we study model selection from the perspective of generalization ability, under the framework of structural risk minimization (SRM) and Vapnik-Chervonenkis (VC) theory. The approach emphasizes the balance between the in-sample and out-of-sample fit, which can be achieved by using cross-validation to select a penalty on model complexity. We show that an exact relationship exists between the generalization ability of a model and model selection consistency. By implementing SRM and the VC inequality, we show that Lasso is L2-consistent for model selection under assumptions similar to those imposed on OLS. Furthermore, we derive a probabilistic bound for the distance between the penalized extremum estimator and the extremum estimator without penalty, which is dominated by overfitting. We also propose a new measurement of overfitting, GR2, based on generalization ability, that converges to zero if model selection is consistent. Using simulations, we demonstrate that the proposed CV-Lasso algorithm performs well in terms of model selection and overfitting control.

Suggested Citation

  • Ning Xu & Jian Hong & Timothy C. G. Fisher, 2016. "Model selection consistency from the perspective of generalization ability and VC theory with an application to Lasso," Papers 1606.00142, arXiv.org.
  • Handle: RePEc:arx:papers:1606.00142
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1606.00142
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alexandre Belloni & Victor Chernozhukov, 2011. "High Dimensional Sparse Econometric Models: An Introduction," Papers 1106.5242, arXiv.org, revised Sep 2011.
    2. Sebastiano Manzan, 2015. "Forecasting the Distribution of Economic Variables in a Data-Rich Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 144-164, January.
    3. Chatterjee, A. & Gupta, S. & Lahiri, S.N., 2015. "On the residual empirical process based on the ALASSO in high dimensions and its functional oracle property," Journal of Econometrics, Elsevier, vol. 186(2), pages 317-324.
    4. B. Pistoresi & F. Salsano & D. Ferrari, 2011. "Political institutions and central bank independence revisited," Applied Economics Letters, Taylor & Francis Journals, vol. 18(7), pages 679-682.
    5. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    6. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    7. Ulrike Schneider & Martin Wagner, 2012. "Catching Growth Determinants with the Adaptive Lasso," German Economic Review, Verein für Socialpolitik, vol. 13(1), pages 71-85, February.
    8. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    9. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Inference for High-Dimensional Sparse Econometric Models," Papers 1201.0220, arXiv.org.
    10. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    11. Kock, Anders Bredahl & Callot, Laurent, 2015. "Oracle inequalities for high dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
    12. Kim, Hyun Hak & Swanson, Norman R., 2014. "Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence," Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
    13. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    14. Cheng, Xu & Liao, Zhipeng, 2015. "Select the valid and relevant moments: An information-based LASSO for GMM with many moments," Journal of Econometrics, Elsevier, vol. 186(2), pages 443-464.
    15. Caner, Mehmet, 2009. "Lasso-Type Gmm Estimator," Econometric Theory, Cambridge University Press, vol. 25(1), pages 270-290, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liqian Cai & Arnab Bhattacharjee & Roger Calantone & Taps Maiti, 2019. "Variable Selection with Spatially Autoregressive Errors: A Generalized Moments LASSO Estimator," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 146-200, September.
    2. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    3. Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
    4. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
    5. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    6. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
    7. Damian Kozbur, 2013. "Inference in additively separable models with a high-dimensional set of conditioning variables," ECON - Working Papers 284, Department of Economics - University of Zurich, revised Apr 2018.
    8. Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
    9. Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2020. "lassopack: Model selection and prediction with regularized regression in Stata," Stata Journal, StataCorp LP, vol. 20(1), pages 176-235, March.
    10. Iason Kynigakis & Ekaterini Panopoulou, 2022. "Does model complexity add value to asset allocation? Evidence from machine learning forecasting models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 603-639, April.
    11. Krüger, Jens J. & Rhiel, Mathias, 2016. "Determinants of ICT infrastructure: A cross-country statistical analysis," Darmstadt Discussion Papers in Economics 228, Darmstadt University of Technology, Department of Law and Economics.
    12. Federico A. Bugni & Mehmet Caner & Anders Bredahl Kock & Soumendra Lahiri, 2016. "Inference in partially identified models with many moment inequalities using Lasso," CREATES Research Papers 2016-12, Department of Economics and Business Economics, Aarhus University.
    13. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016. "Sparse Graphical Vector Autoregression: A Bayesian Approach," Annals of Economics and Statistics, GENES, issue 123-124, pages 333-361.
    14. Alain Hecq & Luca Margaritella & Stephan Smeekes, 2023. "Granger Causality Testing in High-Dimensional VARs: A Post-Double-Selection Procedure," Journal of Financial Econometrics, Oxford University Press, vol. 21(3), pages 915-958.
    15. Qian, Junhui & Su, Liangjun, 2016. "Shrinkage estimation of common breaks in panel data models via adaptive group fused Lasso," Journal of Econometrics, Elsevier, vol. 191(1), pages 86-109.
    16. Lu, Xun & Su, Liangjun, 2016. "Shrinkage estimation of dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
    17. Ng, Serena, 2013. "Variable Selection in Predictive Regressions," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 752-789, Elsevier.
    18. Zhu, Ying, 2018. "Sparse linear models and l1-regularized 2SLS with high-dimensional endogenous regressors and instruments," Journal of Econometrics, Elsevier, vol. 202(2), pages 196-213.
    19. Kock, Anders Bredahl & Callot, Laurent, 2015. "Oracle inequalities for high dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
    20. Caner, Mehmet & Kock, Anders Bredahl, 2018. "Asymptotically honest confidence regions for high dimensional parameters by the desparsified conservative Lasso," Journal of Econometrics, Elsevier, vol. 203(1), pages 143-168.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1606.00142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.