IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1306.0490.html
   My bibliography  Save this paper

Multifractality and long memory of a financial index

Author

Listed:
  • Pablo Su'arez-Garc'ia
  • David G'omez-Ullate

Abstract

In this paper we will try to assess the multifractality displayed by the high-frequency returns of Madrid's Stock Exchange IBEX35 index. A Multifractal Detrended Fluctuation Analysis shows that this index has a wide singularity spectrum which is most likely caused by its long memory. Our findings also show that this long-memory can be considered as the superposition of a high-frequency component (related to the daily cycles of arrival of information to the market), over a slowly-varying component that reverberates for long periods of time and which shows no apparent relation with human economic cycles. This later component is therefore postulated to be endogenous to market's dynamics and to be also the most probable source of some of the stylized facts commonly associated with financial time series.

Suggested Citation

  • Pablo Su'arez-Garc'ia & David G'omez-Ullate, 2013. "Multifractality and long memory of a financial index," Papers 1306.0490, arXiv.org.
  • Handle: RePEc:arx:papers:1306.0490
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1306.0490
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas Lux, 2003. "The Multi-Fractal Model of Asset Returns:Its Estimation via GMM and Its Use for Volatility Forecasting," Computing in Economics and Finance 2003 14, Society for Computational Economics.
    2. Laurent Calvet & Adlai Fisher, 2002. "Multifractality In Asset Returns: Theory And Evidence," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 381-406, August.
    3. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    4. Wang, Hui & Xiang, Luojie & Pandey, R.B., 2012. "A multifractal detrended fluctuation analysis (MDFA) of the Chinese growth enterprise market (GEM)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3496-3502.
    5. Norouzzadeh, P. & Dullaert, W. & Rahmani, B., 2007. "Anti-correlation and multifractal features of Spain electricity spot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 333-342.
    6. Petre Caraiani, 2012. "Evidence of Multifractality from Emerging European Stock Markets," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    7. Shiller, Robert J, 1981. "Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?," American Economic Review, American Economic Association, vol. 71(3), pages 421-436, June.
    8. Stanley, H.E. & Amaral, L.A.N. & Goldberger, A.L. & Havlin, S. & Ivanov, P.Ch. & Peng, C.-K., 1999. "Statistical physics and physiology: Monofractal and multifractal approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 270(1), pages 309-324.
    9. B. B. Mandelbrot, 2001. "Scaling in financial prices: III. Cartoon Brownian motions in multifractal time," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 427-440.
    10. David H. Cutler & James M. Poterba & Lawrence H. Summers, 1988. "What Moves Stock Prices?," Working papers 487, Massachusetts Institute of Technology (MIT), Department of Economics.
    11. Laurent Calvet & Adlai Fisher & Benoit Mandelbrot, 1997. "Large Deviations and the Distribution of Price Changes," Cowles Foundation Discussion Papers 1165, Cowles Foundation for Research in Economics, Yale University.
    12. Arneodo, A. & Audit, B. & Bacry, E. & Manneville, S. & Muzy, J.F. & Roux, S.G., 1998. "Thermodynamics of fractal signals based on wavelet analysis: application to fully developed turbulence data and DNA sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 254(1), pages 24-45.
    13. Turiel, Antonio & Pérez-Vicente, Conrad J., 2003. "Multifractal geometry in stock market time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 629-649.
    14. Y. Malevergne & V. Pisarenko & D. Sornette, 2005. "Empirical distributions of stock returns: between the stretched exponential and the power law?," Quantitative Finance, Taylor & Francis Journals, vol. 5(4), pages 379-401.
    15. Ausloos, M., 2012. "Measuring complexity with multifractals in texts. Translation effects," Chaos, Solitons & Fractals, Elsevier, vol. 45(11), pages 1349-1357.
    16. Eisler, Z. & Kertész, J., 2004. "Multifractal model of asset returns with leverage effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 603-622.
    17. Suárez-García, Pablo & Gómez-Ullate, David, 2013. "Scaling, stability and distribution of the high-frequency returns of the Ibex35 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1409-1417.
    18. Xu, Zhaoxia & Gençay, Ramazan, 2003. "Scaling, self-similarity and multifractality in FX markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 323(C), pages 578-590.
    19. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    20. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    21. Jean-Philippe Bouchaud, 2010. "The endogenous dynamics of markets: price impact and feedback loops," Papers 1009.2928, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suárez-García, Pablo & Gómez-Ullate, David, 2014. "Multifractality and long memory of a financial index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 226-234.
    2. Akash P. POOJARI & Siva Kiran GUPTHA & G Raghavender RAJU, 2022. "Multifractal analysis of equities. Evidence from the emerging and frontier banking sectors," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(3(632), A), pages 61-80, Autumn.
    3. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
    4. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    5. Eisler, Z. & Kertész, J., 2004. "Multifractal model of asset returns with leverage effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 603-622.
    6. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Casado Belmonte, M.P. & Trinidad Segovia, J.E., 2020. "A note on power-law cross-correlated processes," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    7. Grahovac, Danijel & Leonenko, Nikolai N., 2014. "Detecting multifractal stochastic processes under heavy-tailed effects," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 78-89.
    8. Caraiani, Petre & Haven, Emmanuel, 2015. "Evidence of multifractality from CEE exchange rates against Euro," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 395-407.
    9. Batten, Jonathan A. & Kinateder, Harald & Wagner, Niklas, 2014. "Multifractality and value-at-risk forecasting of exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 71-81.
    10. Krenar Avdulaj & Ladislav Kristoufek, 2020. "On Tail Dependence and Multifractality," Mathematics, MDPI, vol. 8(10), pages 1-13, October.
    11. Sutthisit Jamdee & Cornelis A. Los, 2005. "Multifractal Modeling of the US Treasury Term Structure and Fed Funds Rate," Finance 0502021, University Library of Munich, Germany.
    12. Leopoldo S'anchez-Cant'u & Carlos Arturo Soto-Campos & Andriy Kryvko, 2016. "Evidence of Self-Organization in Time Series of Capital Markets," Papers 1604.03996, arXiv.org, revised Mar 2017.
    13. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    14. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
    15. Zunino, Luciano & Figliola, Alejandra & Tabak, Benjamin M. & Pérez, Darío G. & Garavaglia, Mario & Rosso, Osvaldo A., 2009. "Multifractal structure in Latin-American market indices," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2331-2340.
    16. Onali, Enrico & Goddard, John, 2011. "Are European equity markets efficient? New evidence from fractal analysis," International Review of Financial Analysis, Elsevier, vol. 20(2), pages 59-67, April.
    17. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    18. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    19. Michele Vodret & Iacopo Mastromatteo & Bence Tóth & Michael Benzaquen, 2023. "Microfounding GARCH models and beyond: a Kyle-inspired model with adaptive agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(3), pages 599-625, July.
    20. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1306.0490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.