Advanced Search
MyIDEAS: Login

The multi-fractal model of asset returns : its estimation via GMM and its use for volatility forecasting

Contents:

Author Info

  • Lux, Thomas

Abstract

Multi-fractal processes have been proposed as a new formalism for modeling the time series of returns in finance. The major attraction of these processes is their ability to generate various degrees of long memory in different powers of returns - a feature that has been found to characterize virtually all financial prices. Furthermore, elementary variants of multi-fractal models are very parsimonious formalizations as they are essentially one-parameter families of stochastic processes. The aim of this paper is to provide the characteristics of a causal multi-fractal model (replacing the earlier combinatorial approaches discussed in the literature), to estimate the parameters of this model and to use these estimates in forecasting financial volatility. We use the auto-covariances of log increments of the multi-fractal process in order to estimate its parameters consistently via GMM (Generalized Method of Moment). Simulations show that this approach leads to essentially unbiased estimates, which also have much smaller root mean squared errors than those obtained from the traditional ?scaling? approach. Our empirical estimates are used in out-of-sample forecasting of volatility for a number of important financial assets. Comparing the multi-fractal forecasts with those derived from GARCH and FIGARCH models yields results in favor of the new model: multi-fractal forecasts dominate all other forecasts in one out of four cases considered, while in the remaining cases they are head to head with one or more of their competitors. --

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://econstor.eu/bitstream/10419/3031/1/EWP-2003-13.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Christian-Albrechts-University of Kiel, Department of Economics in its series Economics Working Papers with number |aEconomics working paper / Christian-Albrechts-Universität Kiel, Department of Economics |x2003,13.

as in new window
Length:
Date of creation: 2003
Date of revision:
Handle: RePEc:zbw:cauewp:1123

Contact details of provider:
Postal: D-24098 Kiel,Wilhelm-Seelig-Platz 1
Phone: 0431-880 3282
Fax: 0431-880 3150
Web page: http://www.wiso.uni-kiel.de/econ/
More information through EDIRC

Related research

Keywords: multi-fractality ; financial volatility ; forecasting;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Laurent Calvet & Adlai Fisher, 1999. "Forecasting Multifractal Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-017, New York University, Leonard N. Stern School of Business-.
  2. Vilasuso, Jon, 2002. "Forecasting exchange rate volatility," Economics Letters, Elsevier, vol. 76(1), pages 59-64, June.
  3. Laurent Calvet & Adlai Fisher, 2003. "Regime-Switching and the Estimation of Multifractal Processes," NBER Working Papers 9839, National Bureau of Economic Research, Inc.
  4. Laurent Calvet & Adlai Fisher, 2002. "Multifractality In Asset Returns: Theory And Evidence," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 381-406, August.
  5. Adlai Fisher & Laurent Calvet & Benoit Mandelbrot, 1997. "Multifractality of Deutschemark/US Dollar Exchange Rates," Cowles Foundation Discussion Papers 1166, Cowles Foundation for Research in Economics, Yale University.
  6. Torben G. Andersen & Tim Bollerslev, 1996. "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," NBER Working Papers 5752, National Bureau of Economic Research, Inc.
  7. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-68, July.
  8. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-80, July.
  9. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
  10. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-313, September.
  11. J-F. Muzy & D. Sornette & J. delour & A. Arneodo, 2001. "Multifractal returns and hierarchical portfolio theory," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 131-148.
  12. Torben G. Andersen & Hyung-Jin Chung & Bent E. Sorensen, . "EMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Computing in Economics and Finance 1997 6, Society for Computational Economics.
  13. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
  14. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  15. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
  16. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
  17. Terence Mills, 1997. "Stylized facts on the temporal and distributional properties of daily FT-SE returns," Applied Financial Economics, Taylor & Francis Journals, vol. 7(6), pages 599-604.
  18. Thomas Lux, 1996. "Long-term stochastic dependence in financial prices: evidence from the German stock market," Applied Economics Letters, Taylor & Francis Journals, vol. 3(11), pages 701-706.
  19. T. Lux, 2001. "Turbulence in financial markets: the surprising explanatory power of simple cascade models," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 632-640.
  20. Brockwell, P. J. & Dahlhaus, R., 2004. "Generalized Levinson-Durbin and Burg algorithms," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 129-149.
  21. Goetzmann, William Nelson, 1993. "Patterns in Three Centuries of Stock Market Prices," The Journal of Business, University of Chicago Press, vol. 66(2), pages 249-70, April.
  22. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Davies, Paul Lyndon, 2006. "Long range financial data and model choice," Technical Reports 2006,21, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  2. Lux, Thomas & Kaizoji, Taisei, 2004. "Forecasting volatility and volume in the Tokyo stock market: The advantage of long memory models," Economics Working Papers 2004,05, Christian-Albrechts-University of Kiel, Department of Economics.
  3. G.-F. Gu & W.-X. Zhou, 2009. "On the probability distribution of stock returns in the Mike-Farmer model," The European Physical Journal B - Condensed Matter and Complex Systems, Springer, vol. 67(4), pages 585-592, February.
  4. Suárez-García, Pablo & Gómez-Ullate, David, 2014. "Multifractality and long memory of a financial index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 226-234.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:zbw:cauewp:1123. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.