IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1302.0583.html
   My bibliography  Save this paper

Efficient Importance Sampling for Rare Event Simulation with Applications

Author

Listed:
  • Cheng-Der Fuh
  • Huei-Wen Teng
  • Ren-Her Wang

Abstract

Importance sampling has been known as a powerful tool to reduce the variance of Monte Carlo estimator for rare event simulation. Based on the criterion of minimizing the variance of Monte Carlo estimator within a parametric family, we propose a general account for finding the optimal tilting measure. To this end, when the moment generating function of the underlying distribution exists, we obtain a simple and explicit expression of the optimal alternative distribution. The proposed algorithm is quite general to cover many interesting examples, such as normal distribution, noncentral $\chi^2$ distribution, and compound Poisson processes. To illustrate the broad applicability of our method, we study value-at-risk (VaR) computation in financial risk management and bootstrap confidence regions in statistical inferences.

Suggested Citation

  • Cheng-Der Fuh & Huei-Wen Teng & Ren-Her Wang, 2013. "Efficient Importance Sampling for Rare Event Simulation with Applications," Papers 1302.0583, arXiv.org.
  • Handle: RePEc:arx:papers:1302.0583
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1302.0583
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2002. "Portfolio Value‐at‐Risk with Heavy‐Tailed Risk Factors," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 239-269, July.
    2. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2000. "Variance Reduction Techniques for Estimating Value-at-Risk," Management Science, INFORMS, vol. 46(10), pages 1349-1364, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samer A. Kharroubi, 2018. "Posterior simulation via the exponentially tilted signed root log-likelihood ratio," Computational Statistics, Springer, vol. 33(1), pages 213-234, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shih-Kuei Lin & Ren-Her Wang & Cheng-Der Fuh, 2006. "Risk Management for Linear and Non-Linear Assets: A Bootstrap Method with Importance Resampling to Evaluate Value-at-Risk," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(3), pages 261-295, September.
    2. Peter Christoffersen & Silvia Gonçalves, 2004. "Estimation Risk in Financial Risk Management," CIRANO Working Papers 2004s-15, CIRANO.
    3. Soumyadip Ghosh & Raghu Pasupathy, 2012. "C-NORTA: A Rejection Procedure for Sampling from the Tail of Bivariate NORTA Distributions," INFORMS Journal on Computing, INFORMS, vol. 24(2), pages 295-310, May.
    4. Weihuan Huang & Nifei Lin & L. Jeff Hong, 2022. "Monte-Carlo Estimation of CoVaR," Papers 2210.06148, arXiv.org.
    5. Grundke, Peter, 2009. "Importance sampling for integrated market and credit portfolio models," European Journal of Operational Research, Elsevier, vol. 194(1), pages 206-226, April.
    6. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2011. "Efficient Risk Estimation via Nested Sequential Simulation," Management Science, INFORMS, vol. 57(6), pages 1172-1194, June.
    7. Rongda Chen & Ze Wang & Lean Yu, 2017. "Importance Sampling for Credit Portfolio Risk with Risk Factors Having t-Copula," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1101-1124, July.
    8. Cheng-Der Fuh & Inchi Hu & Ya-Hui Hsu & Ren-Her Wang, 2011. "Efficient Simulation of Value at Risk with Heavy-Tailed Risk Factors," Operations Research, INFORMS, vol. 59(6), pages 1395-1406, December.
    9. Xing Jin & Allen X. Zhang, 2006. "Reclaiming Quasi-Monte Carlo Efficiency in Portfolio Value-at-Risk Simulation Through Fourier Transform," Management Science, INFORMS, vol. 52(6), pages 925-938, June.
    10. Cheng-Der Fuh & Huei-Wen Teng & Ren-Her Wang, 2018. "Efficient Simulation of Value-at-Risk Under a Jump Diffusion Model: A New Method for Moderate Deviation Events," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 973-990, April.
    11. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2022. "Estimating risks of option books using neural-SDE market models," Papers 2202.07148, arXiv.org.
    12. L. Jeff Hong, 2009. "Estimating Quantile Sensitivities," Operations Research, INFORMS, vol. 57(1), pages 118-130, February.
    13. Guangxin Jiang & L. Jeff Hong & Barry L. Nelson, 2020. "Online Risk Monitoring Using Offline Simulation," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 356-375, April.
    14. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    15. Raymond BRUMMELHUIS & Jules Sadefo-Kamdem, 2009. "Var For Quadratic Portfolio'S With Generalized Laplace Distributed Returns," Working Papers 09-06, LAMETA, Universtiy of Montpellier, revised Jun 2009.
    16. Begen, Mehmet A. & Pun, Hubert & Yan, Xinghao, 2016. "Supply and demand uncertainty reduction efforts and cost comparison," International Journal of Production Economics, Elsevier, vol. 180(C), pages 125-134.
    17. Pierre Nyquist, 2013. "Moderate deviations for importance sampling estimators of risk measures," Papers 1306.6588, arXiv.org.
    18. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
    19. Mbairadjim Moussa, A. & Sadefo Kamdem, J. & Terraza, M., 2014. "Fuzzy value-at-risk and expected shortfall for portfolios with heavy-tailed returns," Economic Modelling, Elsevier, vol. 39(C), pages 247-256.
    20. Leung, Melvern & Li, Youwei & Pantelous, Athanasios A. & Vigne, Samuel A., 2021. "Bayesian Value-at-Risk backtesting: The case of annuity pricing," European Journal of Operational Research, Elsevier, vol. 293(2), pages 786-801.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1302.0583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.