IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1108.1216.html
   My bibliography  Save this paper

Computation of copulas by Fourier methods

Author

Listed:
  • Antonis Papapantoleon

Abstract

We provide an integral representation for the (implied) copulas of dependent random variables in terms of their moment generating functions. The proof uses ideas from Fourier methods for option pricing. This representation can be used for a large class of models from mathematical finance, including L\'evy and affine processes. As an application, we compute the implied copula of the NIG L\'evy process which exhibits notable time-dependence.

Suggested Citation

  • Antonis Papapantoleon, 2011. "Computation of copulas by Fourier methods," Papers 1108.1216, arXiv.org, revised Jun 2014.
  • Handle: RePEc:arx:papers:1108.1216
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1108.1216
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kallsen, Jan & Tankov, Peter, 2006. "Characterization of dependence of multidimensional Lévy processes using Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1551-1572, August.
    2. Christa Cuchiero & Damir Filipovi'c & Eberhard Mayerhofer & Josef Teichmann, 2009. "Affine processes on positive semidefinite matrices," Papers 0910.0137, arXiv.org, revised Apr 2011.
    3. Elisa Luciano & Wim Schoutens, 2006. "A multivariate jump-driven financial asset model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 385-402.
    4. Elisa Luciano & Patrizia Semeraro, 2010. "A Generalized Normal Mean-Variance Mixture For Return Processes In Finance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(03), pages 415-440.
    5. Reiichiro Kawai, 2009. "A multivariate Levy process model with linear correlation," Quantitative Finance, Taylor & Francis Journals, vol. 9(5), pages 597-606.
    6. Ernst Eberlein & Kathrin Glau & Antonis Papapantoleon, 2010. "Analysis of Fourier Transform Valuation Formulas and Applications," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(3), pages 211-240.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:uts:finphd:41 is not listed on IDEAS
    2. Boris Buchmann & Benjamin Kaehler & Ross Maller & Alexander Szimayer, 2015. "Multivariate Subordination using Generalised Gamma Convolutions with Applications to V.G. Processes and Option Pricing," Papers 1502.03901, arXiv.org, revised Oct 2016.
    3. Michele Leonardo Bianchi & Asmerilda Hitaj & Gian Luca Tassinari, 2020. "Multivariate non-Gaussian models for financial applications," Papers 2005.06390, arXiv.org.
    4. Mesias Alfeus, 2019. "Stochastic Modelling of New Phenomena in Financial Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2019.
    5. Kurt, Kevin & Frey, Rüdiger, 2022. "Markov-modulated affine processes," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 391-422.
    6. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    7. Alfeus, Mesias & Grasselli, Martino & Schlögl, Erik, 2020. "A consistent stochastic model of the term structure of interest rates for multiple tenors," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    8. Mesias Alfeus & Erik Schlögl, 2018. "On Numerical Methods for Spread Options," Research Paper Series 388, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Florence Guillaume, 2013. "The αVG model for multivariate asset pricing: calibration and extension," Review of Derivatives Research, Springer, vol. 16(1), pages 25-52, April.
    10. Michael Samet & Christian Bayer & Chiheb Ben Hammouda & Antonis Papapantoleon & Ra'ul Tempone, 2022. "Optimal Damping with Hierarchical Adaptive Quadrature for Efficient Fourier Pricing of Multi-Asset Options in L\'evy Models," Papers 2203.08196, arXiv.org, revised Oct 2023.
    11. Gian Luca Tassinari & Michele Leonardo Bianchi, 2014. "Calibrating The Smile With Multivariate Time-Changed Brownian Motion And The Esscher Transform," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-34.
    12. Alexandre Petkovic, 2009. "Three essays on exotic option pricing, multivariate Lévy processes and linear aggregation of panel models," ULB Institutional Repository 2013/210357, ULB -- Universite Libre de Bruxelles.
    13. Petar Jevtić & Marina Marena & Patrizia Semeraro, 2019. "Multivariate Marked Poisson Processes And Market Related Multidimensional Information Flows," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-26, March.
    14. Elisa Luciano & Marina Marena & Patrizia Semeraro, 2013. "Dependence Calibration and Portfolio Fit with FactorBased Time Changes," Carlo Alberto Notebooks 307, Collegio Carlo Alberto, revised 2015.
    15. Florence Guillaume, 2018. "Multivariate Option Pricing Models With Lévy And Sato Vg Marginal Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-26, March.
    16. Roberto Marfè, 2012. "A generalized variance gamma process for financial applications," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 75-87, June.
    17. Lukas Gonon & Christoph Schwab, 2021. "Deep ReLU network expression rates for option prices in high-dimensional, exponential Lévy models," Finance and Stochastics, Springer, vol. 25(4), pages 615-657, October.
    18. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    19. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    20. Claudia Klüppelberg & Gabriel Kuhn & Liang Peng, 2008. "Semi‐Parametric Models for the Multivariate Tail Dependence Function – the Asymptotically Dependent Case," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 701-718, December.
    21. Lynn Boen & Florence Guillaume, 2020. "Towards a $$\Delta $$Δ-Gamma Sato multivariate model," Review of Derivatives Research, Springer, vol. 23(1), pages 1-39, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1108.1216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.