IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/388.html
   My bibliography  Save this paper

On Numerical Methods for Spread Options

Author

Abstract

Spread options are multi-asset options whose payoffs depend on the difference of two underlying financial variables. In most cases, analytically closed form solutions for pricing such payoffs are not available, and the application of numerical pricing methods turns out to be non-trivial. We consider several such non-trivial cases and explore the performance of the highly efficient numerical technique of Hurd and Zhou (2010), comparing this with Monte Carlo simulation and the lower bound approximation formula of Caldana and Fusai (2013). We show that the former is in essence an application of the two–dimensional Parseval Identity. As application examples, we price spread options in a model where asset prices are driven by a multivariate normal inverse Gaussian (NIG) process, in a threefactor stochastic volatility model, as well as in examples of models driven by other popular multivariate Lévy processes such as the variance Gamma process, and discuss the price sensitivity with respect to volatility. We also consider examples in the fixed–income market, specifically, on cross–currency interest rate spreads and on LIBOR/OIS spreads. In terms of FFT computation, we have used the FFTW library (see Frigo and Johnson (2010)) and we document appropriate usage of this library to reconcile it with the MATLAB ifft2 counterpart.

Suggested Citation

  • Mesias Alfeus & Erik Schlögl, 2018. "On Numerical Methods for Spread Options," Research Paper Series 388, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:388
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/article/downloads/rp388.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Caldana, Ruggero & Fusai, Gianluca, 2013. "A general closed-form spread option pricing formula," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4893-4906.
    2. Elisa Luciano & Wim Schoutens, 2006. "A multivariate jump-driven financial asset model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 385-402.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Alfeus, Mesias & Grasselli, Martino & Schlögl, Erik, 2020. "A consistent stochastic model of the term structure of interest rates for multiple tenors," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    5. Ernst Eberlein & Kathrin Glau & Antonis Papapantoleon, 2010. "Analysis of Fourier Transform Valuation Formulas and Applications," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(3), pages 211-240.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:uts:finphd:41 is not listed on IDEAS
    2. Mesias Alfeus, 2019. "Stochastic Modelling of New Phenomena in Financial Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2019.
    3. Mesias Alfeus & Erik Schlögl, 2019. "On Spread Option Pricing Using Two-Dimensional Fourier Transform," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-20, August.
    4. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    5. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    6. Edoardo Berton & Lorenzo Mercuri, 2021. "An Efficient Unified Approach for Spread Option Pricing in a Copula Market Model," Papers 2112.11968, arXiv.org, revised Feb 2023.
    7. Alfeus, Mesias & Grasselli, Martino & Schlögl, Erik, 2020. "A consistent stochastic model of the term structure of interest rates for multiple tenors," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    8. Anders Grosen & Pernille Jessen & Thomas Kokholm, 2014. "An asset protection scheme for banks exposed to troubled loan portfolios," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 38(4), pages 568-588, October.
    9. Karol Gellert & Erik Schlogl, 2021. "Short Rate Dynamics: A Fed Funds and SOFR Perspective," Research Paper Series 420, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. Len Patrick Dominic M. Garces & Gerald H. L. Cheang, 2021. "A numerical approach to pricing exchange options under stochastic volatility and jump-diffusion dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 21(12), pages 2025-2054, December.
    11. Michael Samet & Christian Bayer & Chiheb Ben Hammouda & Antonis Papapantoleon & Ra'ul Tempone, 2022. "Optimal Damping with Hierarchical Adaptive Quadrature for Efficient Fourier Pricing of Multi-Asset Options in L\'evy Models," Papers 2203.08196, arXiv.org, revised Oct 2023.
    12. Belssing Taruvinga, 2019. "Solving Selected Problems on American Option Pricing with the Method of Lines," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2019.
    13. Alessandro Gnoatto, 2017. "Coherent Foreign Exchange Market Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-29, February.
    14. Lorenz Schneider & Bertrand Tavin, 2015. "Seasonal Stochastic Volatility and Correlation together with the Samuelson Effect in Commodity Futures Markets," Papers 1506.05911, arXiv.org.
    15. Lorenz Schneider & Bertrand Tavin, 2018. "Seasonal Stochastic Volatility and the Samuelson Effect in Agricultural Futures Markets," Papers 1802.01393, arXiv.org, revised Nov 2018.
    16. Jing Li & Lingfei Li & Rafael Mendoza-Arriaga, 2016. "Additive subordination and its applications in finance," Finance and Stochastics, Springer, vol. 20(3), pages 589-634, July.
    17. Bertrand Tavin & Lorenz Schneider, 2018. "From the Samuelson volatility effect to a Samuelson correlation effect : An analysis of crude oil calendar spread options," Post-Print hal-02311970, HAL.
    18. Schneider, Lorenz & Tavin, Bertrand, 2018. "From the Samuelson volatility effect to a Samuelson correlation effect: An analysis of crude oil calendar spread options," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 185-202.
    19. Kurt, Kevin & Frey, Rüdiger, 2022. "Markov-modulated affine processes," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 391-422.
    20. Mesias Alfeus & James Collins, 2023. "A novel stochastic modeling framework for coal production and logistics through options pricing analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-19, December.
    21. Antonis Papapantoleon, 2011. "Computation of copulas by Fourier methods," Papers 1108.1216, arXiv.org, revised Jun 2014.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/qfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.