Advanced Search
MyIDEAS: Login

Linear stochastic volatility models

Contents:

Author Info

  • Jacek Jakubowski
  • Maciej Wisniewolski
Registered author(s):

    Abstract

    In this paper we investigate general linear stochastic volatility models with correlated Brownian noises. In such models the asset price satisfies a linear SDE with coefficient of linearity being the volatility process. This class contains among others Black-Scholes model, a log-normal stochastic volatility model and Heston stochastic volatility model. For a linear stochastic volatility model we derive representations for the probability density function of the arbitrage price of a financial asset and the prices of European call and put options. A closed-form formulae for the density function and the prices of European call and put options are given for log-normal stochastic volatility model. We also obtain present some new results for Heston and extended Heston stochastic volatility models.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://arxiv.org/pdf/0909.4765
    File Function: Latest version
    Download Restriction: no

    Bibliographic Info

    Paper provided by arXiv.org in its series Papers with number 0909.4765.

    as in new window
    Length:
    Date of creation: Sep 2009
    Date of revision: May 2013
    Handle: RePEc:arx:papers:0909.4765

    Contact details of provider:
    Web page: http://arxiv.org/

    Related research

    Keywords:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Y. Maghsoodi, 2007. "Exact Solution Of A Martingale Stochastic Volatility Option Problem And Its Empirical Evaluation," Mathematical Finance, Wiley Blackwell, vol. 17(2), pages 249-265.
    2. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    3. Marc Romano & Nizar Touzi, 1997. "Contingent Claims and Market Completeness in a Stochastic Volatility Model," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 399-412.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:0909.4765. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.