IDEAS home Printed from https://ideas.repec.org/p/ags/ubfred/305287.html
   My bibliography  Save this paper

‘Fruchtfolge’: A crop rotation decision support system for optimizing cropping choices with big data and spatially explicit modeling

Author

Listed:
  • Pahmeyer, Christoph
  • Kuhn, Till
  • Britz, Wolfgang

Abstract

Deciding on which crop to plant on a field and how to fertilize it has become increasingly complex as volatile markets, location factors as well as policy restrictions need to be considered simultaneously. To assist farmers in this process, we develop the web-based, open source decision support system ‘Fruchtfolge’ (German for ‘crop rotation’). It provides decision makers with a crop and management recommendation for each field based on the solution of a single farm optimization model. The optimization model accounts for field specific location factors, labor endowments, field-to-farm distances and policy restrictions such as measures linked to the EU Nitrates Directives and the Greening of the EU Common Agricultural Policy. ‘Fruchtfolge’ is user-friendly by automatically including big data related to farm, location and management characteristics and providing instant feedback on alternative management choices. This way, creating a first optimal cropping plan generally requires less than five minutes. We apply the decision support system to a German case study farm which manages fields outside and inside a nitrate sensitive area. In the year 2021, revised fertilization regulations come in force in Germany, which amongst others lowers maximal allowed nitrogen applications relative to crop nutrient needs in nitrate sensitive areas. The regulations provoke profit losses of up to 15% for the former optimal crop rotation. The optimal adaptation strategy proposed by ‘Fruchfolge’ diminishes this loss to 10%. The reduction in profit loss clearly underlines the benefits of our support tool to take optimal cropping decisions in a complex environment. Future research should identify barriers of farmers to apply decision support systems and upon availability, integrate more detailed crop and field specific sensor data.

Suggested Citation

  • Pahmeyer, Christoph & Kuhn, Till & Britz, Wolfgang, 2020. "‘Fruchtfolge’: A crop rotation decision support system for optimizing cropping choices with big data and spatially explicit modeling," Discussion Papers 305287, University of Bonn, Institute for Food and Resource Economics.
  • Handle: RePEc:ags:ubfred:305287
    DOI: 10.22004/ag.econ.305287
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/305287/files/Dispap_20_6.pdf
    Download Restriction: no

    File URL: https://ageconsearch.umn.edu/record/305287/files/Fruchtfolge_Supplementary_Material.gms.txt
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.305287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Till Kuhn, 2017. "The revision of the German Fertiliser Ordinance in 2017," Discussion Papers 262054, University of Bonn, Institute for Food and Resource Economics.
    2. Britz, Wolfgang, 2014. "A New Graphical User Interface Generator for Economic Models and its Comparison to Existing Approaches," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 63(4).
    3. Musshoff, Oliver & Hirschauer, Norbert, 2004. "Optimierung unter Unsicherheit mit Hilfe stochastischer Simulation und Genetischer Algorithmen – dargestellt anhand der Optimierung des Produktionsprogramms eines Brandenburger Marktfruchtbetriebes," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 53(07), pages 1-16.
    4. Bruce A. McCarl & Wilfred V. Candler & D. Howard Doster & Paul R. Robbins, 1977. "Experiences With Farmer Oriented Linear Programming For Crop Planning," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 25(1), pages 17-30, February.
    5. Britz, Wolfgang, 2014. "A New Graphical User Interface Generator for Economic Models and its Comparison to Existing Approaches," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 63(04), pages 1-15, December.
    6. Kuhn, Till & Schäfer, David & Holm-Müller, Karin & Britz, Wolfgang, 2019. "On-farm compliance costs with the EU-Nitrates Directive: A modelling approach for specialized livestock production in northwest Germany," Agricultural Systems, Elsevier, vol. 173(C), pages 233-243.
    7. Mußhoff, O. & Hirschauer, N., 2006. "Die Rehabilitation von Optimierungsverfahren? - Eine Analyse des Anbauverhaltens ausgewählter Brandenburger Marktfruchtbetriebe," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 41, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Britz, Wolfgang & Ciaian, Pavel & Gocht, Alexander & Kanellopoulos, Argyris & Kremmydas, Dimitrios & Müller, Marc & Petsakos, Athanasios & Reidsma, Pytrik, 2021. "A design for a generic and modular bio-economic farm model," Agricultural Systems, Elsevier, vol. 191(C).
    2. Mössinger, Johannes & Troost, Christian & Berger, Thomas, 2022. "Bridging the gap between models and users: A lightweight mobile interface for optimized farming decisions in interactive modeling sessions," Agricultural Systems, Elsevier, vol. 195(C).
    3. Klaus Mittenzwei & Wolfgang Britz, 2018. "Analysing Farm‐specific Payments for Norway using the Agrispace Model," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(3), pages 777-793, September.
    4. Britz, Wolfgang & van der Mensbrugghe, Dominique, 2017. "A flexible, modular and extendable framework for CGE analysis in GAMS," Conference papers 332918, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Ferrari, Emanuele & Roson, Roberto Britz, Wolfgang & Britz, Wolfgang & Dudu, Hasan, 2019. "An extented myGTAP model to address subsistence production and sub-national households as a module in CGEBox," Conference papers 333059, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. Wolfgang Britz & Hasan Dudu & Ilaria Fusacchia & Yaghoob Jafari & Roberto Roson & Luca Salvatici & Martina Sartori, 2019. "Economy-wide analysis of food waste reductions and related costs," JRC Research Reports JRC113395, Joint Research Centre.
    7. Pahmeyer, Christoph, 2018. "Database Driven Crop Planning Optimization Experiences From A Farmer Oriented Webapplication," 58th Annual Conference, Kiel, Germany, September 12-14, 2018 275854, German Association of Agricultural Economists (GEWISOLA).
    8. Kuhn, T. & Enders, A. & Gaiser, T. & Schäfer, D. & Srivastava, A.K. & Britz, W., 2020. "Coupling crop and bio-economic farm modelling to evaluate the revised fertilization regulations in Germany," Agricultural Systems, Elsevier, vol. 177(C).
    9. Klaus Mittenzwei, 2020. "Greenhouse Gas Emissions in Norwegian Agriculture: The Regional and Structural Dimension," Sustainability, MDPI, vol. 12(6), pages 1-13, March.
    10. Schaefer, David & Britz, Wolfgang & Kuhn, Till, 2020. "Modelling policy induced manure transports at large scale using an agent-based simulation model," Discussion Papers 305270, University of Bonn, Institute for Food and Resource Economics.
    11. Víctor M. Albornoz & Gabriel E. Zamora, 2021. "Decomposition-based heuristic for the zoning and crop planning problem with adjacency constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 248-265, April.
    12. Cashman, Christopher M. & Martin, Marhsall A. & McCarl, Bruce A., 1980. "Economic Consequences Of Restrictions On Herbicides Currently Used On Indiana Farms," 1980 Annual Meeting, July 27-30, Urbana-Champaign, Illinois 278866, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    13. Apland, Jeffrey, 1990. "Incorporating Field Time Risk Into A Stochastic Programming Model Of Farm Production," Staff Papers 14283, University of Minnesota, Department of Applied Economics.
    14. Drynan, Ross G., 1986. "On Resolving Multiple Optima in Linear Programming," Review of Marketing and Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 54(02), pages 1-5, August.
    15. Venus, Terese E. & Strauss, Felix & Venus, Thomas J. & Sauer, Johannes, 2021. "Understanding stakeholder preferences for future biogas development in Germany," Land Use Policy, Elsevier, vol. 109(C).
    16. Wiborg, Torben & McCarl, Bruce A. & Rasmussen, Svend & Schneider, Uwe A., 2005. "Aggregation and Calibration of Agricultural Sector Models Through Crop Mix Restrictions and Marginal Profit Adjustments," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24567, European Association of Agricultural Economists.
    17. Musshoff, Oliver & Hirschauer, Norbert, 2007. "What benefits are to be derived from improved farm program planning approaches? - The role of time series models and stochastic optimization," Agricultural Systems, Elsevier, vol. 95(1-3), pages 11-27, December.
    18. Kuhn, T. & Möhring, N. & Töpel, A. & Jakob, F. & Britz, W. & Bröring, S. & Pich, A. & Schwaneberg, U. & Rennings, M., 2022. "Using a bio-economic farm model to evaluate the economic potential and pesticide load reduction of the greenRelease technology," Agricultural Systems, Elsevier, vol. 201(C).
    19. Musser, Wesley N. & Alexander, Vickie J. & Tew, Bernard V. & Smittle, Doyle A., 1985. "A Mathematical Programming Model for Vegetable Rotations," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 17(1), pages 169-176, July.
    20. Freytag, J. & Britz, W. & Kuhn, T., 2023. "The economic potential of organic production for stockless arable farms importing biogas digestate: A case study analysis for western Germany," Agricultural Systems, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ubfred:305287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/zefbnde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.