IDEAS home Printed from https://ideas.repec.org/p/ags/iwmirp/246417.html
   My bibliography  Save this paper

Reviving the Ganges water machine: potential and challenges to meet increasing water demand in the Ganges River Basin

Author

Listed:
  • Amarasinghe, Upali A.
  • Muthuwatta, Lal
  • Smakhtin, Vladimir
  • Surinaidu, Lagudu
  • Natarajan, R.
  • Chinnasamy, Pennan
  • Kakumanu, Krishna Reddy
  • Prathapar, Sanmugam A.
  • Jain, S. K.
  • Ghosh, N. C.
  • Singh, S.
  • Sharma, A.
  • Kumar, S.
  • Goel, M. K.

Abstract

Although the Ganges River Basin (GRB) has abundant water resources, the seasonal monsoon causes a mismatch in water supply and demand, which creates severe water-related challenges for the people living in the basin, the rapidly growing economy and the environment. Addressing these increasing challenges will depend on how people manage the basin’s groundwater resources, on which the reliance will increase further due to limited prospects for additional surface storage development. This report assesses the potential of the Ganges Water Machine (GWM), a concept proposed 40 years ago, to meet the increasing water demand through groundwater, and mitigate the impacts of floods and droughts. The GWM provides additional subsurface storage (SSS) through the accelerated use of groundwater prior to the onset of the monsoon season, and subsequent recharging of this SSS through monsoon surface runoff. It was identified that there is potential to enhance SSS through managed aquifer recharge during the monsoon season, and to use solar energy for groundwater pumping, which is financially more viable than using diesel as practiced in many areas at present. The report further explores the limitations associated with water quality issues for pumping and recharge in the GRB, and discusses other related challenges, including availability of land for recharge structures and people’s willingness to increase the cropping intensity beyond the present level.

Suggested Citation

  • Amarasinghe, Upali A. & Muthuwatta, Lal & Smakhtin, Vladimir & Surinaidu, Lagudu & Natarajan, R. & Chinnasamy, Pennan & Kakumanu, Krishna Reddy & Prathapar, Sanmugam A. & Jain, S. K. & Ghosh, N. C. & , 2016. "Reviving the Ganges water machine: potential and challenges to meet increasing water demand in the Ganges River Basin," IWMI Reports 246417, International Water Management Institute.
  • Handle: RePEc:ags:iwmirp:246417
    DOI: 10.22004/ag.econ.246417
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/246417/files/H047712.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.246417?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. F. Lutz & W. W. Immerzeel & A. B. Shrestha & M. F. P. Bierkens, 2014. "Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation," Nature Climate Change, Nature, vol. 4(7), pages 587-592, July.
    2. Giordano, Mark & Villholth, Karen, 2007. "The agricultural groundwater revolution: opportunities and threats to development," IWMI Books, Reports H040039, International Water Management Institute.
    3. Molden, D., 1997. "Accounting for water use and productivity," IWMI Books, Reports H021374, International Water Management Institute.
    4. Sabina Alkire, Maria Emma Santos, 2010. "Acute Multidimensional Poverty: A New Index for Developing Countries," OPHI Working Papers 38, Queen Elizabeth House, University of Oxford.
    5. Sakthivadivel, R., 2007. "The groundwater recharge movement in India," IWMI Books, Reports H040048, International Water Management Institute.
    6. Ou2019Keeffe, J. & Kaushal, N. & Bharati, Luna & Smakhtin, Vladimir, 2012. "Assessment of environmental flows for the Upper Ganga Basin. [Project report of the environmental flows assessment done under the Living Ganga Program]," IWMI Research Reports H044950, International Water Management Institute.
    7. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture," IWMI Books, Reports H040193, International Water Management Institute.
    8. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary. In Russian," IWMI Books, Reports H041260, International Water Management Institute.
    9. Gassman, Philip W. & Reyes, Manuel R. & Green, Colleen H. & Arnold, Jeffrey G., 2007. "The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions," ISU General Staff Papers 200701010800001027, Iowa State University, Department of Economics.
    10. Molden, David J., 1997. "Accounting for water use and productivity," IWMI Books, International Water Management Institute, number 113623.
    11. Paul Pavelic & Brindha Karthikeyan & Giriraj Amarnath & Nishadi Eriyagama & Lal Muthuwatta & Vladimir Smakhtin & Prasun K. Gangopadhyay & Ravinder Paul Singh Malik & Atmaram Mishra & Bharat R. Sharma , 2015. "Controlling floods and droughts through underground storage: from concept to pilot implementation in the Ganges River Basin (IWMI Research Report 165)," IWMI Research Reports H047460, International Water Management Institute.
    12. Amarasinghe, Upali & Shah, Tushaar & Turral, Hugh & Anand, B. K., 2007. "India’s water future to 2025-2050: Business-as-usual scenario and deviations," IWMI Research Reports H040852, International Water Management Institute.
    13. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary," IWMI Books, Reports H039769, International Water Management Institute.
    14. Smakhtin, Vladimir & Anputhas, Markandu, 2006. "An assessment of environmental flow requirements of Indian river basins," IWMI Research Reports H039610, International Water Management Institute.
    15. Ou2019Keeffe, J. & Kaushal, N. & Smakhtin, Vladimir & Bharati, Luna, 2012. "Assessment of environmental flows for the Upper Ganga Basin. [Summary project report of the environmental flows assessment done under the Living Ganga Program]," IWMI Research Reports H045079, International Water Management Institute.
    16. Mahfuzur Khan & Clifford Voss & Winston Yu & Holly Michael, 2014. "Water Resources Management in the Ganges Basin: A Comparison of Three Strategies for Conjunctive Use of Groundwater and Surface Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1235-1250, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    2. Huang, Feng & Li, Baoguo, 2010. "Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach: Part I: Method development and validation," Agricultural Water Management, Elsevier, vol. 97(7), pages 1077-1092, July.
    3. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," Book Chapters,, International Water Management Institute.
    4. Erenstein, Olaf, 2009. "Comparing water management in rice-wheat production systems in Haryana, India and Punjab, Pakistan," Agricultural Water Management, Elsevier, vol. 96(12), pages 1799-1806, December.
    5. Haileslassie, Amare & Peden, Don & Gebreselassie, Solomon & Amede, Tilahun & Descheemaeker, Katrien, 2009. "Livestock water productivity in mixed crop-livestock farming systems of the Blue Nile basin: Assessing variability and prospects for improvement," Agricultural Systems, Elsevier, vol. 102(1-3), pages 33-40, October.
    6. Venot, Jean-Philippe & Sharma, Bharat R. & Rao, Kamineni V.G.K., 2008. "The Lower Krishna Basin Trajectory: Relationships between Basin Development and Downstream Environmental Degradation," IWMI Research Reports 44515, International Water Management Institute.
    7. Upali A. Amarasinghe & R.P. S. Malik & Bharat R. Sharma, 2010. "Overcoming growing water scarcity: Exploring potential improvements in water productivity in India," Natural Resources Forum, Blackwell Publishing, vol. 34(3), pages 188-199, August.
    8. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," IWMI Books, Reports H042635, International Water Management Institute.
    9. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.
    10. Vyshpolsky, F. & Mukhamedjanov, K. & Bekbaev, U. & Ibatullin, S. & Yuldashev, T. & Noble, A.D. & Mirzabaev, A. & Aw-Hassan, A. & Qadir, M., 2010. "Optimizing the rate and timing of phosphogypsum application to magnesium-affected soils for crop yield and water productivity enhancement," Agricultural Water Management, Elsevier, vol. 97(9), pages 1277-1286, September.
    11. Cai, Xueliang & Sharma, Bharat R. & Matin, Mir Abdul & Sharma, Devesh & Gunasinghe, Sarath, 2010. "An assessment of crop water productivity in the Indus and Ganges River Basins: current status and scope for improvement," IWMI Research Reports 112970, International Water Management Institute.
    12. Upali A. Amarasinghe & Vladimir Smakhtin, 2014. "Water productivity and water footprint: misguided concepts or useful tools in water management and policy?," Water International, Taylor & Francis Journals, vol. 39(7), pages 1000-1017, November.
    13. de Fraiture, Charlotte & Wichelns, Dennis, 2010. "Satisfying future water demands for agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 502-511, April.
    14. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    15. Venot, Jean-Philippe & Sharma, Bharat R. & Rao, K. V. G. K., 2008. "The lower Krishna Basin trajectory: relationships between basin development and downstream environmental degradation," IWMI Research Reports H041463, International Water Management Institute.
    16. Clement, Floriane & Ishaq, Saba & Samad, Madar & Acharya, N. Sreedhar & Radha, A. Venkata & Haileslassie, A. & Blummel, M. & Dey, A. & Khan, M. A. & Shindey, D. N. & Mit, R., 2010. "Improving water productivity, reducing poverty and enhancing equity in mixed crop-livestock systems in the Indo-Gangetic Basin: CPWF project report 68," IWMI Research Reports H043549, International Water Management Institute.
    17. Villholth, Karen, 2015. "Groundwater for food production and livelihoods - the nexus with climate change and transboundary water management," Book Chapters,, International Water Management Institute.
    18. Zareena Begum Irfan & Bina Gupta, 2015. "To Consume or to Conserve: Examining Water Conservation Model for Wheat Cultivation in India," Working Papers 2015-101, Madras School of Economics,Chennai,India.
    19. Malte Müller & Jens Rommel & Christian Kimmich, 2018. "Farmers’ Adoption of Irrigation Technologies: Experimental Evidence from a Coordination Game with Positive Network Externalities in India," German Economic Review, Verein für Socialpolitik, vol. 19(2), pages 119-139, May.
    20. CGIAR Research Program on Water, Land and Ecosystems, 2015. "Groundwater and ecosystem services: a framework for managing smallholder groundwater-dependent agrarian socio-ecologies - applying an ecosystem services and resilience approach," IWMI Books, International Water Management Institute, number 208414.

    More about this item

    Keywords

    Agribusiness; Crop Production/Industries; Demand and Price Analysis; Industrial Organization; International Development; Resource /Energy Economics and Policy;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iwmirp:246417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iwmiclk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.