IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i5p1235-1250.html
   My bibliography  Save this article

Water Resources Management in the Ganges Basin: A Comparison of Three Strategies for Conjunctive Use of Groundwater and Surface Water

Author

Listed:
  • Mahfuzur Khan
  • Clifford Voss
  • Winston Yu
  • Holly Michael

Abstract

The most difficult water resources management challenge in the Ganges Basin is the imbalance between water demand and seasonal availability. More than 80 % of the annual flow in the Ganges River occurs during the 4-month monsoon, resulting in widespread flooding. During the rest of the year, irrigation, navigation, and ecosystems suffer because of water scarcity. Storage of monsoonal flow for utilization during the dry season is one approach to mitigating these problems. Three conjunctive use management strategies involving subsurface water storage are evaluated in this study: Ganges Water Machine (GWM), Pumping Along Canals (PAC), and Distributed Pumping and Recharge (DPR). Numerical models are used to determine the efficacy of these strategies. Results for the Indian State of Uttar Pradesh (UP) indicate that these strategies create seasonal subsurface storage from 6 to 37 % of the yearly average monsoonal flow in the Ganges exiting UP over the considered range of conditions. This has clear implications for flood reduction, and each strategy has the potential to provide irrigation water and to reduce soil waterlogging. However, GWM and PAC require significant public investment in infrastructure and management, as well as major shifts in existing water use practices; these also involve spatially-concentrated pumping, which may induce land subsidence. DPR also requires investment and management, but the distributed pumping is less costly and can be more easily implemented via adaptation of existing water use practices in the basin. Copyright © Springer Science+Business Media Dordrecht (outside the USA) 2014

Suggested Citation

  • Mahfuzur Khan & Clifford Voss & Winston Yu & Holly Michael, 2014. "Water Resources Management in the Ganges Basin: A Comparison of Three Strategies for Conjunctive Use of Groundwater and Surface Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1235-1250, March.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:5:p:1235-1250
    DOI: 10.1007/s11269-014-0537-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0537-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0537-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sakthivadivel, R., 2002. "Innovations in conjunctive water management: artificial recharge in Madhya Ganga Canal Project. IWMI-TATA Water Policy Research Program Annual Partners' Meet, 2002," IWMI Working Papers H029646, International Water Management Institute.
    2. Erica Camnasio & Gianfranco Becciu, 2011. "Evaluation of the Feasibility of Irrigation Storage in a Flood Detention Pond in an Agricultural Catchment in Northern Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1489-1508, March.
    3. Bouwer, Herman, 2000. "Integrated water management: emerging issues and challenges," Agricultural Water Management, Elsevier, vol. 45(3), pages 217-228, August.
    4. World Bank, 2010. "Deep Wells and Prudence : Towards Pragmatic Action for Addressing Groundwater Overexploitation in India," World Bank Publications - Reports 2835, The World Bank Group.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dennis Wichelns, 2015. "Achieving Water and Food Security in 2050: Outlook, Policies, and Investments," Agriculture, MDPI, vol. 5(2), pages 1-33, April.
    2. Alam, Mohammad Faiz & Pavelic, Paul, 2020. "Underground Transfer of Floods for Irrigation (UTFI): exploring potential at the global scale," IWMI Research Reports H050008, International Water Management Institute.
    3. Amarasinghe, Upali A. & Muthuwatta, Lal & Smakhtin, Vladimir & Surinaidu, Lagudu & Natarajan, R. & Chinnasamy, Pennan & Kakumanu, Krishna Reddy & Prathapar, Sanmugam A. & Jain, S. K. & Ghosh, N. C. & , 2016. "Reviving the Ganges water machine: potential and challenges to meet increasing water demand in the Ganges River Basin," IWMI Reports 246417, International Water Management Institute.
    4. Alam, Mohammad Faiz & Pavelic, Paul & Sharma, Navneet & Sikka, Alok, 2020. "Managed aquifer recharge of monsoon runoff using village ponds: performance assessment of a pilot trial in the Ramganga Basin, India," Papers published in Journals (Open Access), International Water Management Institute, pages 1-12(4):102.
    5. Sisi Li & Yanhua Zhuang & Hongbin Liu & Zhen Wang & Fulin Zhang & Mingquan Lv & Limei Zhai & Xianpeng Fan & Shiwei Niu & Jingrui Chen & Changxu Xu & Na Wang & Shuhe Ruan & Wangzheng Shen & Menghan Mi , 2023. "Enhancing rice production sustainability and resilience via reactivating small water bodies for irrigation and drainage," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Gnanachandrasamy & C. Dushiyanthan & T. Jeyavel Rajakumar & Yongzhang Zhou, 2020. "Assessment of hydrogeochemical characteristics of groundwater in the lower Vellar river basin: using Geographical Information System (GIS) and Water Quality Index (WQI)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 759-789, February.
    2. Pamela Katic, 2015. "Groundwater Spatial Dynamics and Endogenous Well Location," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 181-196, January.
    3. Shangzhou Song & Shaohua Wang & Huichun Ye & Yong Guan, 2022. "Exploratory Analysis on the Spatial Distribution and Influencing Factors of Beitang Landscape in the Shangzhuang Basin," Land, MDPI, vol. 11(3), pages 1-22, March.
    4. Thibaut Cuvelier & Pierre Archambeau & Benjamin Dewals & Quentin Louveaux, 2018. "Comparison Between Robust and Stochastic Optimisation for Long-term Reservoir Management Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1599-1614, March.
    5. Soumik Bhattacharya & Swarupa Das & Sandipan Das & Mahesh Kalashetty & Sumedh R. Warghat, 2021. "An integrated approach for mapping groundwater potential applying geospatial and MIF techniques in the semiarid region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 495-510, January.
    6. Antony, Edna & Singandhupe, R. B., 2004. "Impact of drip and surface irrigation on growth, yield and WUE of capsicum (Capsicum annum L.)," Agricultural Water Management, Elsevier, vol. 65(2), pages 121-132, March.
    7. Komeda, Kenji, 2021. "Environmental Factors and Internal Migration in India," Warwick-Monash Economics Student Papers 20, Warwick Monash Economics Student Papers.
    8. Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
    9. Morten Graversgaard & Beatrice Hedelin & Laurence Smith & Flemming Gertz & Anker Lajer Højberg & John Langford & Grit Martinez & Erik Mostert & Emilia Ptak & Heidi Peterson & Nico Stelljes & Cors Van , 2018. "Opportunities and Barriers for Water Co-Governance—A Critical Analysis of Seven Cases of Diffuse Water Pollution from Agriculture in Europe, Australia and North America," Sustainability, MDPI, vol. 10(5), pages 1-39, May.
    10. Strand, Jon, 2012. "Low-level versus high-level equilibrium in public utility services," Journal of Public Economics, Elsevier, vol. 96(1), pages 163-172.
    11. Giovanni Ravazzani & Paride Gianoli & Stefania Meucci & Marco Mancini, 2014. "Assessing Downstream Impacts of Detention Basins in Urbanized River Basins Using a Distributed Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1033-1044, March.
    12. Wichelns, Dennis & Oster, J.D., 2006. "Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 114-127, November.
    13. Audrey Richard-Ferroudji & Nicolas Faysse & Zhour Bouzidi & Menon Ragunath & Jean-Daniel Rinaudo, 2016. "Proposal COSUST Special Issue « Co-designing Research on Social Transformations to Sustainability » Title: The DIALAQ project on sustainable groundwater management: a transdisciplinary and transcultur," Post-Print hal-01378517, HAL.
    14. Sacchidananda Mukherjee & Prakash Nelliyat, 2006. "Ground Water Pollution and Emerging Environmental Challenges of Industrial Effluent Irrigation: A Case Study of Mettupalayam Taluk, Tamilnadu," Working Papers 2006-07, Madras School of Economics,Chennai,India.
    15. Qadir, M. & Boers, Th. M. & Schubert, S. & Ghafoor, A. & Murtaza, G., 2003. "Agricultural water management in water-starved countries: challenges and opportunities," Agricultural Water Management, Elsevier, vol. 62(3), pages 165-185, October.
    16. Namrata Chindarkar & R. Quentin Grafton, 2019. "India's depleting groundwater: When science meets policy," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 6(1), pages 108-124, January.
    17. Sauer, Timm & Havlik, Petr & Schneider, Uwe A. & Kindermann, Georg E. & Obersteiner, Michael, 2008. "Agriculture, Population, Land and Water Scarcity in a Changing World – The Role of Irrigation," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44271, European Association of Agricultural Economists.
    18. Bastiaanssen, W. G. M. & Chandrapala, L., 2003. "Water balance variability across Sri Lanka for assessing agricultural and environmental water use," Agricultural Water Management, Elsevier, vol. 58(2), pages 171-192, February.
    19. World Bank, 2020. "Managing Groundwater for Drought Resilience in South Asia," World Bank Publications - Reports 33332, The World Bank Group.
    20. Marta Antonelli & Martina Sartori, 2014. "Unfolding the Potential of the Virtual Water Concept. What is still under debate?," IEFE Working Papers 74, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:5:p:1235-1250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.