Advanced Search
MyIDEAS: Login

The Daycare Assignment Problem

Contents:

Author Info

  • John Kennes

    ()
    (Department of Economics and Business, Aarhus University, Denmark)

  • Daniel Monte

    ()
    (Department of Economics, Simon Fraser University, Canada)

  • Norovsambuu Tumennasan

    ()
    (Department of Economics and Business, Aarhus University, Denmark)

Abstract

In this paper we take the mechanism design approach to the problem of assigning children of different ages to daycares, motivated by the mechanism currently in place in Denmark. This problem is similar to the school choice problem, but has two distinguishing features. First, it is characterized by an overlapping generations structure. For example, children of different ages may be allocated to the same daycare, and the same child may be allocated to different daycares across time. Second, the daycares' priorities are history-dependent: a daycare gives priority to children currently enrolled in it, as is the case with the Danish system. We first study the concept of stability, and, to account for the dynamic nature of the problem, we propose a novel solution concept, which we call strong stability. With a suitable restriction on the priority orderings of schools, we show that strong stability and the weaker concept of static stability will coincide. We then extend the well known Gale-Shapley deferred acceptance algorithm for dynamic problems and show that it yields a matching that satisfies strong stability. It is not Pareto dominated by any other matching, and, if there is an efficient stable matching, it must be the Gale-Shapley one. However, contrary to static problems, it does not necessarily Pareto dominate all other strongly stable mechanisms. Most importantly, we show that the Gale-Shapley algorithm is not strategy-proof. In fact, one of our main results is a much stronger impossibility result: For the class of dynamic matching problems that we study, there are no algorithms that satisfy strategy-proofness and strong stability. Second, we show that the also well known Top Trading Cycles algorithm is neither Pareto efficient nor strategy-proof. We conclude by proposing a variation of the serial dictatorship, which is strategyproof and efficient.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: ftp://ftp.econ.au.dk/afn/wp/11/wp11_05.pdf
Download Restriction: no

Bibliographic Info

Paper provided by School of Economics and Management, University of Aarhus in its series Economics Working Papers with number 2011-05.

as in new window
Length: 43
Date of creation: 23 May 2011
Date of revision:
Handle: RePEc:aah:aarhec:2011-05

Contact details of provider:
Web page: http://www.econ.au.dk/afn/

Related research

Keywords: daycare assignment; market design; matching; overlapping generations; weak and strong stability; efficiency;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Blog mentions

As found by EconAcademics.org, the blog aggregator for Economics research:
  1. The daycare assignment problem
    by Economic Logician in Economic Logic on 2011-06-16 14:20:00
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Daniel Monte & Norovsambuu Tumennasan, 2012. "Centralized Allocation in Multiple Markets," Economics Working Papers 2012-09, School of Economics and Management, University of Aarhus.

Lists

This item is featured on the following reading lists or Wikipedia pages:
  1. Economic Logic blog

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:aah:aarhec:2011-05. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.