IDEAS home Printed from https://ideas.repec.org/b/wbk/wbpubs/18781.html
   My bibliography  Save this book

Biochar Systems for Smallholders in Developing Countries : Leveraging Current Knowledge and Exploring Future Potential for Climate-Smart Agriculture

Author

Listed:
  • Sebastian M. Scholz
  • Thomas Sembres
  • Kelli Roberts
  • Thea Whitman
  • Kelpie Wilson
  • Johannes Lehmann

Abstract

Biochar is the carbon-rich organic matter that remains after heating biomass under the minimization of oxygen during a process called pyrolysis. There are a number of reasons why biochar systems may be particularly relevant in developing-country contexts. This report offers a review of what is known about opportunities and risks of biochar systems. Its aim is to provide a state-of-the-art overview of current knowledge regarding biochar science. In that sense the report also offers a reconciling view on different scientific opinions about biochar providing an overall account that shows the various perspectives of its science and application. This includes soil and agricultural impacts of biochar, climate change impacts, social impacts, and competing uses of biomass. The report aims to contextualize the current scientific knowledge in order to put it at use to address the development climate change nexus, including social and environmental sustainability. The report is organized as follows: chapter one offers some introductory comments and notes the increasing interest in biochar both from a scientific and practitioner's point of view; chapter two gives further background on biochar, describing its characteristics and outlining the way in which biochar systems function. Chapter three considers the opportunities and risks of biochar systems. Based on the results of the surveys undertaken, chapter four presents a typology of biochar systems emerging in practice, particularly in the developing world. Life-cycle assessments of the net climate change impact and the net economic profitability of three biochar systems with data collected from relatively advanced biochar projects were conducted and are presented in chapter five. Chapter six investigates various aspects of technology adoption, including barriers to implementing promising systems, focusing on economics, carbon market access, and sociocultural barriers. Finally, the status of knowledge regarding biochar systems is interpreted in chapter seven to determine potential implications for future involvement in biochar research, policy, and project formulation.

Suggested Citation

  • Sebastian M. Scholz & Thomas Sembres & Kelli Roberts & Thea Whitman & Kelpie Wilson & Johannes Lehmann, 2014. "Biochar Systems for Smallholders in Developing Countries : Leveraging Current Knowledge and Exploring Future Potential for Climate-Smart Agriculture," World Bank Publications - Books, The World Bank Group, number 18781, December.
  • Handle: RePEc:wbk:wbpubs:18781
    as

    Download full text from publisher

    File URL: https://openknowledge.worldbank.org/bitstream/handle/10986/18781/888880PUB0Box30lso0784070June122014.pdf?sequence=1
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Woods & Sarah Hemstock & William Burnyeat, 2006. "Bio-Energy Systems at the Community Level in the South Pacific: Impacts & Monitoring," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 461-492, March.
    2. World Bank & International Cryosphere Climate Initiative, 2013. "On Thin Ice : How Cutting Pollution Can Slow Warming and Save Lives [Sobre una delgada capa de hielo : cómo la reducción de la contaminación puede ralentizar el calentamiento y salvar vidas - resum," World Bank Publications - Reports 16628, The World Bank Group.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Otte, Pia Piroschka & Vik, Jostein, 2017. "Biochar systems: Developing a socio-technical system framework for biochar production in Norway," Technology in Society, Elsevier, vol. 51(C), pages 34-45.
    2. Bär, Roger & Reinhard, Jürgen & Ehrensperger, Albrecht & Kiteme, Boniface & Mkunda, Thomas & Wymann von Dach, Susanne, 2021. "The future of charcoal, firewood, and biogas in Kitui County and Kilimanjaro Region: Scenario development for policy support," Energy Policy, Elsevier, vol. 150(C).
    3. Ana Castro & Nilcileny Da Silva Batista & Agnieszka E. Latawiec & Aline Rodrigues & Bernardo Strassburg & Daniel Silva & Ednaldo Araujo & Luiz Fernando D. De Moraes & Jose Guilherme Guerra & Gabriel G, 2018. "The Effects of Gliricidia -Derived Biochar on Sequential Maize and Bean Farming," Sustainability, MDPI, vol. 10(3), pages 1-15, February.
    4. Agus Haryanto & Wahyu Hidayat & Udin Hasanudin & Dewi Agustina Iryani & Sangdo Kim & Sihyun Lee & Jiho Yoo, 2021. "Valorization of Indonesian Wood Wastes through Pyrolysis: A Review," Energies, MDPI, vol. 14(5), pages 1-25, March.
    5. Peter Msumali Rogers & Mathias Fridahl & Pius Yanda & Anders Hansson & Noah Pauline & Simon Haikola, 2021. "Socio-Economic Determinants for Biochar Deployment in the Southern Highlands of Tanzania," Energies, MDPI, vol. 15(1), pages 1-19, December.
    6. Isabel Teichmann & Claudia Kemfert, 2014. "Biokohle in der Landwirtschaft als Klimaretter?," DIW Roundup: Politik im Fokus 47, DIW Berlin, German Institute for Economic Research.
    7. Anders Hansson & Simon Haikola & Mathias Fridahl & Pius Yanda & Edmund Mabhuye & Noah Pauline, 2021. "Biochar as multi-purpose sustainable technology: experiences from projects in Tanzania," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5182-5214, April.
    8. Kiatkamjon Intani & Sajid Latif & Md. Shafiqul Islam & Joachim Müller, 2018. "Phytotoxicity of Corncob Biochar before and after Heat Treatment and Washing," Sustainability, MDPI, vol. 11(1), pages 1-18, December.
    9. Bößner, Stefan & Xylia, Maria & Bilbao, Bibiana & Indriani, Siti N. & Laub, Moritz & Rahn, Eric & Virla, Luis D. & Johnson, Francis X., 2023. "Capacity gaps in land-based mitigation technologies and practices: A first stock take," Land Use Policy, Elsevier, vol. 134(C).
    10. Roger Bär & Albrecht Ehrensperger, 2018. "Accounting for the Boundary Problem at Subnational Level: The Supply–Demand Balance of Biomass Cooking Fuels in Kitui County, Kenya," Resources, MDPI, vol. 7(1), pages 1-32, February.
    11. Shiferaw Feleke & Steven Michael Cole & Haruna Sekabira & Rousseau Djouaka & Victor Manyong, 2021. "Circular Bioeconomy Research for Development in Sub-Saharan Africa: Innovations, Gaps, and Actions," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    12. Belle, Graham H. & Lopez, Francis B., 2014. "Turfgrass Growth And Soil Water Status In Response To Biochar Application," 50th Annual Meeting, July 7-11, 2014, St. Thomas, U.S. Virgin Islands 253320, Caribbean Food Crops Society.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuba, Matthias & Kraft, Stephan & Kirnbauer, Friedrich & Maierhans, Frank & Hofbauer, Hermann, 2018. "Influence of controlled handling of solid inorganic materials and design changes on the product gas quality in dual fluid bed gasification of woody biomass," Applied Energy, Elsevier, vol. 210(C), pages 230-240.
    2. Stefan Gold, 2011. "Bio-energy supply chains and stakeholders," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(4), pages 439-462, April.
    3. Jeuland, M.A. & Bhojvaid, V. & Kar, A. & Lewis, J.J. & Patange, O. & Pattanayak, S.K. & Ramanathan, N. & Rehman, I.H. & Tan Soo, J.S. & Ramanathan, V., 2015. "Preferences for improved cook stoves: Evidence from rural villages in north India," Energy Economics, Elsevier, vol. 52(PB), pages 287-298.
    4. Stephanie Byrom & Sebastian Thomas & Paul Dargusch, 2014. "Millennium development goals and clean development: synergies in the Pacific," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(1), pages 33-44, January.
    5. Cole, Peter & Banks, Glenn, 2017. "Renewable energy programmes in the South Pacific – Are these a solution to dependency?," Energy Policy, Elsevier, vol. 110(C), pages 500-508.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbpubs:18781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tal Ayalon (email available below). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.