IDEAS home Printed from https://ideas.repec.org/a/zib/zjmerd/v41y2018i3p38-42.html
   My bibliography  Save this article

Numerical Investigation Of Modified Savonius Wind Turbine with Various Straight Blade Angle

Author

Listed:
  • Khairil Anwar

    (Far Eastern State Agrarian University, Blagoveshchensk, Polytechnicheskaya street, 86)

  • Syukri Himran

    (Far Eastern State Agrarian University, Blagoveshchensk, Polytechnicheskaya street, 86)

  • Luther Sule

    (Far Eastern State Agrarian University, Blagoveshchensk, Polytechnicheskaya street, 86)

  • Nasruddin Azis

    (Far Eastern State Agrarian University, Blagoveshchensk, Polytechnicheskaya street, 86)

Abstract

The present paper aims to numerically investigate the two-dimensional flow analysis of modified Savonius wind turbine using computational fluid dynamics. The effects of the straight blade angle on the turbine performance were studied. Simulations based on the RANS equations and the SST-k-w turbulence model are used to simulate the airflow over the turbine blades. Both the static and dynamic simulations were performed. In the static simulation, the drag and lift coefficient on the Savonius turbine were directly calculated at every angular position, and the time-averaged moment and power coefficients were computed in each of the dynamic simulations. From the results, it can be concluded that the turbine with a straight blade angle of 100° model gives the better performance at higher Tip Sped Ratio (TSR) than other models.

Suggested Citation

  • Khairil Anwar & Syukri Himran & Luther Sule & Nasruddin Azis, 2018. "Numerical Investigation Of Modified Savonius Wind Turbine with Various Straight Blade Angle," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 41(3), pages 38-42, September.
  • Handle: RePEc:zib:zjmerd:v:41:y:2018:i:3:p:38-42
    DOI: 10.26480/jmerd.03.2018.38.42
    as

    Download full text from publisher

    File URL: https://jmerd.org.my/download/3468/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/jmerd.03.2018.38.42?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kacprzak, Konrad & Liskiewicz, Grzegorz & Sobczak, Krzysztof, 2013. "Numerical investigation of conventional and modified Savonius wind turbines," Renewable Energy, Elsevier, vol. 60(C), pages 578-585.
    2. Kamoji, M.A. & Kedare, S.B. & Prabhu, S.V., 2009. "Experimental investigations on single stage modified Savonius rotor," Applied Energy, Elsevier, vol. 86(7-8), pages 1064-1073, July.
    3. Frikha, Sobhi & Driss, Zied & Ayadi, Emna & Masmoudi, Zied & Abid, Mohamed Salah, 2016. "Numerical and experimental characterization of multi-stage Savonius rotors," Energy, Elsevier, vol. 114(C), pages 382-404.
    4. repec:zib:zjmerd:3jmerd2018-38-42 is not listed on IDEAS
    5. Wang, Lu & Yeung, Ronald W., 2016. "On the performance of a micro-scale Bach-type turbine as predicted by discrete-vortex simulations," Applied Energy, Elsevier, vol. 183(C), pages 823-836.
    6. Driss, Zied & Mlayeh, Olfa & Driss, Dorra & Maaloul, Makram & Abid, Mohamed Salah, 2014. "Numerical simulation and experimental validation of the turbulent flow around a small incurved Savonius wind rotor," Energy, Elsevier, vol. 74(C), pages 506-517.
    7. Ricci, Renato & Romagnoli, Roberto & Montelpare, Sergio & Vitali, Daniele, 2016. "Experimental study on a Savonius wind rotor for street lighting systems," Applied Energy, Elsevier, vol. 161(C), pages 143-152.
    8. Menet, J.-L., 2004. "A double-step Savonius rotor for local production of electricity: a design study," Renewable Energy, Elsevier, vol. 29(11), pages 1843-1862.
    9. Jaohindy, Placide & McTavish, Sean & Garde, François & Bastide, Alain, 2013. "An analysis of the transient forces acting on Savonius rotors with different aspect ratios," Renewable Energy, Elsevier, vol. 55(C), pages 286-295.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:zib:zjmerd:3jmerd2018-38-42 is not listed on IDEAS
    2. Zhang, Yongchao & Kang, Can & Ji, Yanguang & Li, Qing, 2019. "Experimental and numerical investigation of flow patterns and performance of a modified Savonius hydrokinetic rotor," Renewable Energy, Elsevier, vol. 141(C), pages 1067-1079.
    3. Krzysztof Doerffer & Janusz Telega & Piotr Doerffer & Paulina Hercel & Andrzej Tomporowski, 2021. "Dependence of Power Characteristics on Savonius Rotor Segmentation," Energies, MDPI, vol. 14(10), pages 1-18, May.
    4. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    5. C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
    6. Cuevas-Carvajal, N. & Cortes-Ramirez, J.S. & Norato, Julian A. & Hernandez, C. & Montoya-Vallejo, M.F., 2022. "Effect of geometrical parameters on the performance of conventional Savonius VAWT: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Haddad, Hassan Z. & Mohamed, Mohamed H. & Shabana, Yasser M. & Elsayed, Khairy, 2023. "Optimization of Savonius wind turbine with additional blades by surrogate model using artificial neural networks," Energy, Elsevier, vol. 270(C).
    8. Baoshou Zhang & Baowei Song & Zhaoyong Mao & Wenlong Tian & Boyang Li & Bo Li, 2017. "A Novel Parametric Modeling Method and Optimal Design for Savonius Wind Turbines," Energies, MDPI, vol. 10(3), pages 1-20, March.
    9. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    10. Alom, Nur & Saha, Ujjwal K., 2018. "Performance evaluation of vent-augmented elliptical-bladed savonius rotors by numerical simulation and wind tunnel experiments," Energy, Elsevier, vol. 152(C), pages 277-290.
    11. Montelpare, Sergio & D'Alessandro, Valerio & Zoppi, Andrea & Ricci, Renato, 2018. "Experimental study on a modified Savonius wind rotor for street lighting systems. Analysis of external appendages and elements," Energy, Elsevier, vol. 144(C), pages 146-158.
    12. Ducoin, A. & Shadloo, M.S. & Roy, S., 2017. "Direct Numerical Simulation of flow instabilities over Savonius style wind turbine blades," Renewable Energy, Elsevier, vol. 105(C), pages 374-385.
    13. Ricci, Renato & Romagnoli, Roberto & Montelpare, Sergio & Vitali, Daniele, 2016. "Experimental study on a Savonius wind rotor for street lighting systems," Applied Energy, Elsevier, vol. 161(C), pages 143-152.
    14. Tahani, Mojtaba & Rabbani, Ali & Kasaeian, Alibakhsh & Mehrpooya, Mehdi & Mirhosseini, Mojtaba, 2017. "Design and numerical investigation of Savonius wind turbine with discharge flow directing capability," Energy, Elsevier, vol. 130(C), pages 327-338.
    15. Piotr Doerffer & Krzysztof Doerffer & Tomasz Ochrymiuk & Janusz Telega, 2019. "Variable Size Twin-Rotor Wind Turbine," Energies, MDPI, vol. 12(13), pages 1-17, July.
    16. Noman, Abdullah Al & Tasneem, Zinat & Sahed, Md. Fahad & Muyeen, S.M. & Das, Sajal K. & Alam, Firoz, 2022. "Towards next generation Savonius wind turbine: Artificial intelligence in blade design trends and framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Ferrari, G. & Federici, D. & Schito, P. & Inzoli, F. & Mereu, R., 2017. "CFD study of Savonius wind turbine: 3D model validation and parametric analysis," Renewable Energy, Elsevier, vol. 105(C), pages 722-734.
    18. Scheaua Fanel Dorel & Goanta Adrian Mihai & Dragan Nicusor, 2021. "Review of Specific Performance Parameters of Vertical Wind Turbine Rotors Based on the SAVONIUS Type," Energies, MDPI, vol. 14(7), pages 1-23, April.
    19. Shigetomi, Akinari & Murai, Yuichi & Tasaka, Yuji & Takeda, Yasushi, 2011. "Interactive flow field around two Savonius turbines," Renewable Energy, Elsevier, vol. 36(2), pages 536-545.
    20. Kacprzak, Konrad & Liskiewicz, Grzegorz & Sobczak, Krzysztof, 2013. "Numerical investigation of conventional and modified Savonius wind turbines," Renewable Energy, Elsevier, vol. 60(C), pages 578-585.
    21. Mohammadi, M. & Mohammadi, R. & Ramadan, A. & Mohamed, M.H., 2018. "Numerical investigation of performance refinement of a drag wind rotor using flow augmentation and momentum exchange optimization," Energy, Elsevier, vol. 158(C), pages 592-606.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zjmerd:v:41:y:2018:i:3:p:38-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://jmerd.org.my/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.