IDEAS home Printed from https://ideas.repec.org/a/zib/zbmjsa/v4y2020i2p81-85.html
   My bibliography  Save this article

Cucumber (Cucumis sativus L.) is one of the most popular vegetable crop of cucurbitaceae family

Author

Listed:
  • Abishkar Khatiwad

    (B.Sc. Ag, Agriculture and Forestry University, Chitwan, Nepal.)

  • Pragya Adhikari

    (B.Sc. Ag, Agriculture and Forestry University, Chitwan, Nepal.)

Abstract

The experiment was laid out as 4×2 factorial Completely Randomized Block Design (RCBD) with three replications. The treatment consisted of two cucumber varieties (Dynasty and Malini) and different types of Organic Fertilizers namely (Peat moss, Vermicompost, Trichocompost and bare soil). Seedlings were raised on plastic pots inside a plastic tunnel with respective treatment and randomization of replication was done. Data analaysis was done using Duncan’s Multiple Range Test (DMRT) using GENSTAT. The result of the experiment indicated that trichocompost had significantly higher germination index(23.41) being statistically at par with peatmoss(22.76), greater number of leaves(3.9), dry root weight(0.8857g), dry shoot weight(1.647g), and lowest damping off incidence at 7DAS(1.567%), 11DAS(3.75%) and 15 DAS(4.58%). Peatmoss had higher germination (92.64%) being statistically at par with trichocompost (91.74%), larger leaf width(6.152cm) being at par with vermicompost(6.160cm) and trichocompost(6.023cm), higher fresh weight (23.67g) being at par with vermicomost(22g) and trichocompost(21.67g), higher vigor index(2320) and longer shoot length(7.980cm) being at par with trichocompost(7.853cm). Similarly control had higher root to shoot length ratio(2.977). Also, variety malini was found to be superior in all observed parameters except damping off. Thus it is suggested to use malini as a variety and trichocompost as a potting media to raise seedlings of cucumber in rautahat condition for better results.

Suggested Citation

  • Abishkar Khatiwad & Pragya Adhikari, 2020. "Cucumber (Cucumis sativus L.) is one of the most popular vegetable crop of cucurbitaceae family," Malaysian Journal of Sustainable Agriculture (MJSA), Zibeline International Publishing, vol. 4(2), pages 81-85, March.
  • Handle: RePEc:zib:zbmjsa:v:4:y:2020:i:2:p:81-85
    DOI: 10.26480/mjsa.02.2020.81.85
    as

    Download full text from publisher

    File URL: https://myjsustainagri.com/download/14285/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/mjsa.02.2020.81.85?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pishgar-Komleh, Seyyed Hassan & Omid, Mahmoud & Heidari, Mohammad Davoud, 2013. "On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province," Energy, Elsevier, vol. 59(C), pages 63-71.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Šarauskis, Egidijus & Masilionytė, Laura & Juknevičius, Darius & Buragienė, Sidona & Kriaučiūnienė, Zita, 2019. "Energy use efficiency, GHG emissions, and cost-effectiveness of organic and sustainable fertilisation," Energy, Elsevier, vol. 172(C), pages 1151-1160.
    2. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    3. Shaikh, Mohammad A. & Kucukvar, Murat & Onat, Nuri Cihat & Kirkil, Gokhan, 2017. "A framework for water and carbon footprint analysis of national electricity production scenarios," Energy, Elsevier, vol. 139(C), pages 406-421.
    4. Wang, Xiaozhong & Liu, Bin & Wu, Gang & Sun, Yixiang & Guo, Xisheng & Jin, Zhenghui & Xu, Weining & Zhao, Yongzhi & Zhang, Fusuo & Zou, Chunqin & Chen, Xinping, 2018. "Environmental costs and mitigation potential in plastic-greenhouse pepper production system in China: A life cycle assessment," Agricultural Systems, Elsevier, vol. 167(C), pages 186-194.
    5. Stanisław Bielski & Renata Marks-Bielska & Paweł Wiśniewski, 2022. "Investigation of Energy and Economic Balance and GHG Emissions in the Production of Different Cultivars of Buckwheat ( Fagopyrum esculentum Moench): A Case Study in Northeastern Poland," Energies, MDPI, vol. 16(1), pages 1-24, December.
    6. Asgharipour, Mohammad Reza & Amiri, Zahra & Campbell, Daniel E., 2020. "Evaluation of the sustainability of four greenhouse vegetable production ecosystems based on an analysis of emergy and social characteristics”," Ecological Modelling, Elsevier, vol. 424(C).
    7. Rajaeifar, Mohammad Ali & Akram, Asadolah & Ghobadian, Barat & Rafiee, Shahin & Heijungs, Reinout & Tabatabaei, Meisam, 2016. "Environmental impact assessment of olive pomace oil biodiesel production and consumption: A comparative lifecycle assessment," Energy, Elsevier, vol. 106(C), pages 87-102.
    8. Darius Juknevičius & Zita Kriaučiūnienė & Algirdas Jasinskas & Egidijus Šarauskis, 2020. "Analysis of Changes in Soil Organic Carbon, Energy Consumption and Environmental Impact Using Bio-Products in the Production of Winter Wheat and Oilseed Rape," Sustainability, MDPI, vol. 12(19), pages 1-15, October.
    9. Indrė Bručienė & Domantas Aleliūnas & Egidijus Šarauskis & Kęstutis Romaneckas, 2021. "Influence of Mechanical and Intelligent Robotic Weed Control Methods on Energy Efficiency and Environment in Organic Sugar Beet Production," Agriculture, MDPI, vol. 11(5), pages 1-17, May.
    10. Morteza Zangeneh & Narges Banaeian & Sean Clark, 2021. "Meta-Analysis on Energy-Use Patterns of Cropping Systems in Iran," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    11. Jinwen Cai & Wenxiao Cheng & Zhenghao Liang & Changzhen Li & Yan Deng & Tao Yin & Changjiang Li, 2023. "Organic and Slow-Release Fertilizer Substitution Strategies Improved the Sustainability of Pineapple Production Systems in the Tropics," Sustainability, MDPI, vol. 15(13), pages 1-17, June.
    12. B. Sarkar & B. Das & P. K. Sundaram & S. S. Mali & A. P. Anurag & A. Upadhyaya & N. Chandra & B. P. Bhatt & A. Kumar, 2023. "Energy input–output analysis and greenhouse gas emission in okra and tomato production in Chotanagpur plateau region of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12945-12964, November.
    13. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Life cycle assessment of rice straw-based power generation in Malaysia," Energy, Elsevier, vol. 70(C), pages 401-410.
    14. Tao Liang & Weilin Tao & Yan Wang & Na Zhou & Wei Hu & Tao Zhang & Dunxiu Liao & Xinping Chen & Xiaozhong Wang, 2023. "The Extension of Vegetable Production to High Altitudes Increases the Environmental Cost and Decreases Economic Benefits in Subtropical Regions," Land, MDPI, vol. 12(3), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbmjsa:v:4:y:2020:i:2:p:81-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://myjsustainagri.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.