IDEAS home Printed from https://ideas.repec.org/a/zib/zbmjsa/v4y2020i2p54-58.html
   My bibliography  Save this article

Effect Of Different Mulching On Yield And Yield Attributes Of Potato In Dadeldhura District, Nepal

Author

Listed:
  • Santosh Bharati

    (Faculty of Agriculture, Agriculture and Forestry University, Rampur, Chitwan, Nepal)

  • Binod Josh

    (Faculty of Agriculture, Agriculture and Forestry University, Rampur, Chitwan, Nepal)

  • Roshan Dhakal

    (Faculty of Agriculture, Agriculture and Forestry University, Rampur, Chitwan, Nepal)

  • Sushma Paneru

    (Faculty of Agriculture, Agriculture and Forestry University, Rampur, Chitwan, Nepal)

  • Shiva Chandra Dhakal

    (Department of Economy, Agriculture and Forestry University, Chitwan, Nepal)

  • Khem Raj Joshi

    (Senior Agriculture officer, PMAMP, Super-Zone)

Abstract

A study on “Effect of different mulching materials on yield and yield attributes of potato in Dadeldhura, District” was conducted from March to June, 2019 in Tadibata, the commanding area of potato superzone, Dadeldhura to detect the effective mulching materials for potato. Lack of irrigation and labor shortage along with high weed infestation were the problem found in the potato production in farmers level .To find out the efficiency of different mulching materials, a field experiment was conducted in RCBD design with five treatments: T1: Control, T2: Saw dust, T3: Rice straw, T4: Black plastic and T5: Rice husk and were replicated four times to find the best mulching materials that can help the farmers to improve their production practice. The data on plant height, aerial stem number, canopy and number of leaves were taken at 45, 60 and 75 days after planting (DAP) and the data on grading, diameter, dry weight were taken after harvesting of potato. After the data collection, data entry was done is MS- Excel and analysis was done by using R-studio software. From the experiment it was found that the highest tuber yield was obtained in black plastic (3.33 kg/m2) which was followed by rice straw (2.74 kg/m2) , saw dust (2.63 kg/m2), rice husk (2.55kg/m2) and lowest tuber yield was obtained in control condition (2.39 kg/m2). Similarly, the soil temperature was influenced by the use of mulching material as compared to the bare soil with highest soil temperature being recorded in black plastic and lowest recorded in control condition. In case of economics, the highest B: C ratio was found in black plastic (2.01) and minimum found in rice husk (1.64). Thus, black plastic is the most effective mulching material for the high production of potato in Dadeldhura.

Suggested Citation

  • Santosh Bharati & Binod Josh & Roshan Dhakal & Sushma Paneru & Shiva Chandra Dhakal & Khem Raj Joshi, 2020. "Effect Of Different Mulching On Yield And Yield Attributes Of Potato In Dadeldhura District, Nepal," Malaysian Journal of Sustainable Agriculture (MJSA), Zibeline International Publishing, vol. 4(2), pages 54-58, February.
  • Handle: RePEc:zib:zbmjsa:v:4:y:2020:i:2:p:54-58
    DOI: 10.26480/mjsa.02.2020.54.58
    as

    Download full text from publisher

    File URL: https://myjsustainagri.com/download/14235/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/mjsa.02.2020.54.58?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dong, Baodi & Liu, Mengyu & Jiang, Jingwei & Shi, Changhai & Wang, Xiaoming & Qiao, Yunzhou & Liu, Yueyan & Zhao, Zhihai & li, Dongxiao & Si, Fuyan, 2014. "Growth, grain yield, and water use efficiency of rain-fed spring hybrid millet (Setaria italica) in plastic-mulched and unmulched fields," Agricultural Water Management, Elsevier, vol. 143(C), pages 93-101.
    2. Zhao, Hong & Xiong, You-Cai & Li, Feng-Min & Wang, Run-Yuan & Qiang, Sheng-Cai & Yao, Tao-Feng & Mo, Fei, 2012. "Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem," Agricultural Water Management, Elsevier, vol. 104(C), pages 68-78.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Tao & Li, Geng & Ning, Tang-Yuan & Zhang, Zhi-Meng & Mi, Qing-Hua & Lal, Rattan, 2018. "Suitability of mulching with biodegradable film to moderate soil temperature and moisture and to increase photosynthesis and yield in peanut," Agricultural Water Management, Elsevier, vol. 208(C), pages 214-223.
    2. Wu, Lihong & Quan, Hao & Wu, Lina & Zhang, Xi & Feng, Hao & Ding, Dianyuan & Siddique, Kadambot H.M., 2023. "Responses of winter wheat yield and water productivity to sowing time and plastic mulching in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 289(C).
    3. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    4. Chen, Ning & Li, Xianyue & Shi, Haibin & Yan, Jianwen & Zhang, Yuehong & Hu, Qi, 2023. "Evaluating the effects of plastic film mulching duration on soil nitrogen dynamic and comprehensive benefit for corn (Zea mays L.) field," Agricultural Water Management, Elsevier, vol. 286(C).
    5. Chen, Yongfan & Zhang, Zeshan & Wang, Xuejiao & Sun, Shuai & Zhang, Yutong & Wang, Sen & Yang, Mingfeng & Ji, Fen & Ji, Chunrong & Xiang, Dao & Zha, Tianshan & Zhang, Lizhen, 2022. "Sap velocity, transpiration and water use efficiency of drip-irrigated cotton in response to chemical topping and row spacing," Agricultural Water Management, Elsevier, vol. 267(C).
    6. Dong, Baodi & Liu, Mengyu & Jiang, Jingwei & Shi, Changhai & Wang, Xiaoming & Qiao, Yunzhou & Liu, Yueyan & Zhao, Zhihai & li, Dongxiao & Si, Fuyan, 2014. "Growth, grain yield, and water use efficiency of rain-fed spring hybrid millet (Setaria italica) in plastic-mulched and unmulched fields," Agricultural Water Management, Elsevier, vol. 143(C), pages 93-101.
    7. Lisson, S.N. & Tarbath, M. & Corkrey, R. & Pinkard, E.A. & Laycock, B. & Howden, S.M. & Botwright Acuña, T. & Makin, A., 2016. "Ambient climate and soil effects on the headspace under clear mulch film," Agricultural Systems, Elsevier, vol. 142(C), pages 41-50.
    8. Gu, Xiao-Bo & Li, Yuan-Nong & Du, Ya-Dan, 2018. "Effects of ridge-furrow film mulching and nitrogen fertilization on growth, seed yield and water productivity of winter oilseed rape (Brassica napus L.) in Northwestern China," Agricultural Water Management, Elsevier, vol. 200(C), pages 60-70.
    9. Hou, Xianqing & Li, Rong, 2019. "Interactive effects of autumn tillage with mulching on soil temperature, productivity and water use efficiency of rainfed potato in loess plateau of China," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    10. Yin, Minhua & Li, Yuannong & Fang, Heng & Chen, Pengpeng, 2019. "Biodegradable mulching film with an optimum degradation rate improves soil environment and enhances maize growth," Agricultural Water Management, Elsevier, vol. 216(C), pages 127-137.
    11. Lin, Wen & Liu, Wenzhao & Zhou, Shanshan & Liu, Chunfen, 2019. "Influence of plastic film mulch on maize water use efficiency in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    12. Cai, Wenjing & Gu, Xiaobo & Du, Yadan & Chang, Tian & Lu, Shiyu & Zheng, Xiaobo & Bai, Dongping & Song, Hui & Sun, Shikun & Cai, Huanjie, 2022. "Effects of mulching on water saving, yield increase and emission reduction for maize in China," Agricultural Water Management, Elsevier, vol. 274(C).
    13. Zhang, Xiao-Feng & Luo, Chong-Liang & Ren, Hong-Xu & Mburu, David & Wang, Bao-Zhong & Kavagi, Levis & Wesly, Kiprotich & Nyende, Aggrey Bernard & Xiong, You-Cai, 2021. "Water productivity and its allometric mechanism in mulching cultivated maize (Zea mays L.) in semiarid Kenya," Agricultural Water Management, Elsevier, vol. 246(C).
    14. Gerçek, Sinan & Demirkaya, Mustafa, 2021. "Impact of colored water pillows on yield and water productivity of pepper under greenhouse conditions," Agricultural Water Management, Elsevier, vol. 250(C).
    15. El-Sayed Khater & Ramy Hamouda & Harby Mostafa, 2020. "Changes of root zone temperature, growth and productivity of broccoli cultivated with coloured plastic mulches," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 66(3), pages 112-121.
    16. Gao, Haihe & Yan, Changrong & Liu, Qin & Li, Zhen & Yang, Xiao & Qi, Ruimin, 2019. "Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 225(C).
    17. Zhang, Shaohui & Wang, Haidong & Sun, Xin & Fan, Junliang & Zhang, Fucang & Zheng, Jing & Li, Yuepeng, 2021. "Effects of farming practices on yield and crop water productivity of wheat, maize and potato in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    18. Sun, Mengyuan & Chen, Wen & Lapen, David R. & Ma, Bin & Lu, Peina & Liu, Jinghui, 2023. "Effects of ridge-furrow with plastic film mulching combining with various urea types on water productivity and yield of potato in a dryland farming system," Agricultural Water Management, Elsevier, vol. 283(C).
    19. Zhang, Runze & Lei, Tong & Wang, Yunfeng & Xu, Jiaxing & Zhang, Panxin & Han, Yan & Hu, Changlu & Yang, Xueyun & Sadras, Victor & Zhang, Shulan, 2022. "Responses of yield and water use efficiency to the interaction between water supply and plastic film mulch in winter wheat-summer fallow system," Agricultural Water Management, Elsevier, vol. 266(C).
    20. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2018. "Determining water use efficiency of wheat and cotton: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 199(C), pages 48-60.

    More about this item

    Keywords

    Potato; Temperature; Mulch; Tuber; Yield.;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbmjsa:v:4:y:2020:i:2:p:54-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://myjsustainagri.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.