IDEAS home Printed from https://ideas.repec.org/a/wly/wirecc/v10y2019i1ne551.html
   My bibliography  Save this article

Climate change vulnerability assessment of species

Author

Listed:
  • Wendy B. Foden
  • Bruce E. Young
  • H. Resit Akçakaya
  • Raquel A. Garcia
  • Ary A. Hoffmann
  • Bruce A. Stein
  • Chris D. Thomas
  • Christopher J. Wheatley
  • David Bickford
  • Jamie A. Carr
  • David G. Hole
  • Tara G. Martin
  • Michela Pacifici
  • James W. Pearce‐Higgins
  • Philip J. Platts
  • Piero Visconti
  • James E. M. Watson
  • Brian Huntley

Abstract

Assessing species' vulnerability to climate change is a prerequisite for developing effective strategies to conserve them. The last three decades have seen exponential growth in the number of studies evaluating how, how much, why, when, and where species will be impacted by climate change. We provide an overview of the rapidly developing field of climate change vulnerability assessment (CCVA) and describe key concepts, terms, steps and considerations. We stress the importance of identifying the full range of pressures, impacts and their associated mechanisms that species face and using this as a basis for selecting the appropriate assessment approaches for quantifying vulnerability. We outline four CCVA assessment approaches, namely trait‐based, correlative, mechanistic and combined approaches and discuss their use. Since any assessment can deliver unreliable or even misleading results when incorrect data and parameters are applied, we discuss finding, selecting, and applying input data and provide examples of open‐access resources. Because rare, small‐range, and declining‐range species are often of particular conservation concern while also posing significant challenges for CCVA, we describe alternative ways to assess them. We also describe how CCVAs can be used to inform IUCN Red List assessments of extinction risk. Finally, we suggest future directions in this field and propose areas where research efforts may be particularly valuable. This article is categorized under: Climate, Ecology, and Conservation > Extinction Risk

Suggested Citation

  • Wendy B. Foden & Bruce E. Young & H. Resit Akçakaya & Raquel A. Garcia & Ary A. Hoffmann & Bruce A. Stein & Chris D. Thomas & Christopher J. Wheatley & David Bickford & Jamie A. Carr & David G. Hole &, 2019. "Climate change vulnerability assessment of species," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 10(1), January.
  • Handle: RePEc:wly:wirecc:v:10:y:2019:i:1:n:e551
    DOI: 10.1002/wcc.551
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wcc.551
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wcc.551?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara Arphorn & Aniruth Manothum & Kotchakorn Santiwung & Kanograt Pangunta & Kunio Hara & Tomohiro Ishimaru, 2021. "Working Conditions and Urinalysis Dipstick Testing among Female Rice Farmers: A Preliminary Cross-Sectional Study," IJERPH, MDPI, vol. 18(17), pages 1-10, August.
    2. Ana-Maria Radomir & Ramona Stan & Alina Florea & Cristina-Magdalena Ciobotea & Florina Mădălina Bănuță & Magdalena Negru & Monica Angela Neblea & Dorin Ioan Sumedrea, 2023. "Overview of the Success of In Vitro Culture for Ex Situ Conservation and Sustainable Utilization of Endemic and Subendemic Native Plants of Romania," Sustainability, MDPI, vol. 15(3), pages 1-26, January.
    3. Yilin Chen & Zhiyong Jiang & Ping Fan & Per G. P. Ericson & Gang Song & Xu Luo & Fumin Lei & Yanhua Qu, 2022. "The combination of genomic offset and niche modelling provides insights into climate change-driven vulnerability," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. I-Cheng Lu & Chen-Cheng Yang & Chi-Hsien Huang & Szu-Ying Chen & Chi-Wei Lin & Chia-Hsiang Lin & Hung-Yi Chuang, 2022. "The Risk Factors for Radiolucent Nephrolithiasis among Workers in High-Temperature Workplaces in the Steel Industry," IJERPH, MDPI, vol. 19(23), pages 1-9, November.
    5. Lei, Nuoa & Masanet, Eric, 2020. "Statistical analysis for predicting location-specific data center PUE and its improvement potential," Energy, Elsevier, vol. 201(C).
    6. Coline C. F. Boonman & Josep M. Serra-Diaz & Selwyn Hoeks & Wen-Yong Guo & Brian J. Enquist & Brian Maitner & Yadvinder Malhi & Cory Merow & Robert Buitenwerf & Jens-Christian Svenning, 2024. "More than 17,000 tree species are at risk from rapid global change," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Daniel P. Johnson, 2022. "Population-Based Disparities in U.S. Urban Heat Exposure from 2003 to 2018," IJERPH, MDPI, vol. 19(19), pages 1-20, September.
    8. Jayanta Mondal & Arijit Das & Rumki Khatun, 2022. "Predicting climate change and its impact on future occurrences of vector-borne diseases in West Bengal, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11871-11894, October.
    9. Lee, Dong-Young & Mehran, Muhammad Taqi & Kim, Jonghwan & Kim, Sangcho & Lee, Seung-Bok & Song, Rak-Hyun & Ko, Eun-Yong & Hong, Jong-Eun & Huh, Joo-Youl & Lim, Tak-Hyoung, 2020. "Scaling up syngas production with controllable H2/CO ratio in a highly efficient, compact, and durable solid oxide coelectrolysis cell unit-bundle," Applied Energy, Elsevier, vol. 257(C).
    10. Pollard, Ciarán P. & Griffin, Christine T. & Andrade Moral, Rafael de & Duffy, Catriona & Chuche, Julien & Gaffney, Michael T. & Fealy, Reamonn M. & Fealy, Rowan, 2020. "phenModel: A temperature-dependent phenology/voltinism model for a herbivorous insect incorporating facultative diapause and budburst," Ecological Modelling, Elsevier, vol. 416(C).
    11. Christine Howard & Emma-Liina Marjakangas & Alejandra Morán-Ordóñez & Pietro Milanesi & Aleksandre Abuladze & Karen Aghababyan & Vitalie Ajder & Volen Arkumarev & Dawn E. Balmer & Hans-Günther Bauer &, 2023. "Local colonisations and extinctions of European birds are poorly explained by changes in climate suitability," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Vogt, Christine A. & Andereck, Kathleen L. & Pham, Kim, 2020. "Designing for quality of life and sustainability," Annals of Tourism Research, Elsevier, vol. 83(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:wirecc:v:10:y:2019:i:1:n:e551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1757-7799 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.