IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v36y2016i10p1896-1915.html
   My bibliography  Save this article

Improving Catastrophe Modeling for Business Interruption Insurance Needs

Author

Listed:
  • Adam Rose
  • Charles K. Huyck

Abstract

While catastrophe (CAT) modeling of property damage is well developed, modeling of business interruption (BI) lags far behind. One reason is the crude nature of functional relationships in CAT models that translate property damage into BI. Another is that estimating BI losses is more complicated because it depends greatly on public and private decisions during recovery with respect to resilience tactics that dampen losses by using remaining resources more efficiently to maintain business function and to recover more quickly. This article proposes a framework for improving hazard loss estimation for BI insurance needs. Improved data collection that allows for analysis at the level of individual facilities within a company can improve matching the facilities with the effectiveness of individual forms of resilience, such as accessing inventories, relocating operations, and accelerating repair, and can therefore improve estimation accuracy. We then illustrate the difference this can make in a case study example of losses from a hurricane.

Suggested Citation

  • Adam Rose & Charles K. Huyck, 2016. "Improving Catastrophe Modeling for Business Interruption Insurance Needs," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1896-1915, October.
  • Handle: RePEc:wly:riskan:v:36:y:2016:i:10:p:1896-1915
    DOI: 10.1111/risa.12550
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12550
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12550?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adam Rose & Shu‐Yi Liao, 2005. "Modeling Regional Economic Resilience to Disasters: A Computable General Equilibrium Analysis of Water Service Disruptions," Journal of Regional Science, Wiley Blackwell, vol. 45(1), pages 75-112, February.
    2. Rose Adam Z. & Oladosu Gbadebo & Lee Bumsoo & Asay Garrett Beeler, 2009. "The Economic Impacts of the September 11 Terrorist Attacks: A Computable General Equilibrium Analysis," Peace Economics, Peace Science, and Public Policy, De Gruyter, vol. 15(2), pages 1-31, July.
    3. Grossi Patricia, 2009. "Property Damage and Insured Losses from the 2001 World Trade Center Attacks," Peace Economics, Peace Science, and Public Policy, De Gruyter, vol. 15(2), pages 1-18, July.
    4. Adam Rose & Gbadebo Oladosu & Shu‐Yi Liao, 2007. "Business Interruption Impacts of a Terrorist Attack on the Electric Power System of Los Angeles: Customer Resilience to a Total Blackout," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 513-531, June.
    5. Adam Rose & Gbadebo Oladosu & Shu-Yi Liao, 2007. "Regional Economic Impacts of a Terrorist Attack on the Water System of Los Angeles: A Computable General Disequilibrium Analysis," Chapters, in: Harry W Richardson & Peter Gordon & James E. Moore II (ed.), The Economic Costs and Consequences of Terrorism, chapter 15, Edward Elgar Publishing.
    6. Thomas Hertel & David Hummels & Terrie L. Walmsley, 2014. "The vulnerability of the Asian supply chain to localized disasters," Chapters, in: Benno Ferrarini & David Hummels (ed.), Asia and Global Production Networks, chapter 3, pages 81-111, Edward Elgar Publishing.
    7. Stéphane Hallegatte, 2008. "An Adaptive Regional Input‐Output Model and its Application to the Assessment of the Economic Cost of Katrina," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 779-799, June.
    8. Adam Rose & Dan Wei, 2013. "Estimating The Economic Consequences Of A Port Shutdown: The Special Role Of Resilience," Economic Systems Research, Taylor & Francis Journals, vol. 25(2), pages 212-232, June.
    9. Stéphane Hallegatte, 2008. "An adaptive regional input-output model and its application to the assessment of the economic cost of Katrina," Post-Print hal-00716550, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saurabh Prabhu & Mohammad Javanbarg & Marc Lehmann & Sez Atamturktur, 2019. "Multi-peril risk assessment for business downtime of industrial facilities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1327-1356, July.
    2. Joost Santos & Christian Yip & Shital Thekdi & Sheree Pagsuyoin, 2020. "Workforce/Population, Economy, Infrastructure, Geography, Hierarchy, and Time (WEIGHT): Reflections on the Plural Dimensions of Disaster Resilience," Risk Analysis, John Wiley & Sons, vol. 40(1), pages 43-67, January.
    3. Adachi, Daisuke & Nakata, Hiroyuki & Sawada, Yasuyuki & Sekiguchi, Kunio, 2023. "Adverse selection and moral hazard in corporate insurance markets: Evidence from the 2011 Thailand floods," Journal of Economic Behavior & Organization, Elsevier, vol. 205(C), pages 376-386.
    4. J. A. León & M. Ordaz & E. Haddad & I. F. Araújo, 2022. "Risk caused by the propagation of earthquake losses through the economy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Arnaud Mignan, 2022. "Categorizing and Harmonizing Natural, Technological, and Socio-Economic Perils Following the Catastrophe Modeling Paradigm," IJERPH, MDPI, vol. 19(19), pages 1-32, October.
    6. Mahmoud, Hussam & Kirsch, Thomas & O'Neil, Dan & Anderson, Shelby, 2023. "The resilience of health care systems following major disruptive events: Current practice and a path forward," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meri Davlasheridze & Kayode O. Atoba & Samuel Brody & Wesley Highfield & William Merrell & Bruce Ebersole & Adam Purdue & Robert W. Gilmer, 2019. "Economic impacts of storm surge and the cost-benefit analysis of a coastal spine as the surge mitigation strategy in Houston-Galveston area in the USA," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(3), pages 329-354, March.
    2. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    3. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    4. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    5. Rui Huang & Arunima Malik & Manfred Lenzen & Yutong Jin & Yafei Wang & Futu Faturay & Zhiyi Zhu, 2022. "Supply-chain impacts of Sichuan earthquake: a case study using disaster input–output analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2227-2248, February.
    6. Selerio, Egberto & Maglasang, Renan, 2021. "Minimizing production loss consequent to disasters using a subsidy optimization model: a pandemic case," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 112-124.
    7. Linn Svegrup & Jonas Johansson & Henrik Hassel, 2019. "Integration of Critical Infrastructure and Societal Consequence Models: Impact on Swedish Power System Mitigation Decisions," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1970-1996, September.
    8. Henriet, Fanny & Hallegatte, Stephane, 2008. "Assessing the Consequences of Natural Disasters on Production Networks: A Disaggregated Approach," Coalition Theory Network Working Papers 46657, Fondazione Eni Enrico Mattei (FEEM).
    9. Zhenhua Chen & Adam Rose, 2018. "Economic resilience to transportation failure: a computable general equilibrium analysis," Transportation, Springer, vol. 45(4), pages 1009-1027, July.
    10. E. E. Koks & M. Bočkarjova & H. de Moel & J. C. J. H. Aerts, 2015. "Integrated Direct and Indirect Flood Risk Modeling: Development and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 882-900, May.
    11. Balakrishnan, Srijith & Lim, Taehoon & Zhang, Zhanmin, 2022. "A methodology for evaluating the economic risks of hurricane-related disruptions to port operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 58-79.
    12. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    13. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    14. Rose Adam Z. & Blomberg S. Brock, 2010. "Total Economic Consequences of Terrorist Attacks: Insights from 9/11," Peace Economics, Peace Science, and Public Policy, De Gruyter, vol. 16(1), pages 1-14, June.
    15. Ling Tan & Ji Guo & Selvarajah Mohanarajah & Kun Zhou, 2021. "Can we detect trends in natural disaster management with artificial intelligence? A review of modeling practices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2389-2417, July.
    16. Zhengtao Zhang & Ning Li & Hong Xu & Jieling Feng & Xi Chen & Chao Gao & Peng Zhang, 2019. "Allocating assistance after a catastrophe based on the dynamic assessment of indirect economic losses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 17-37, October.
    17. Hu, Xi & Pant, Raghav & Hall, Jim W. & Surminski, Swenja & Huang, Jiashun, 2019. "Multi-scale assessment of the economic impacts of flooding: evidence from firm to macro-level analysis in the Chinese manufacturing sector," LSE Research Online Documents on Economics 100534, London School of Economics and Political Science, LSE Library.
    18. Chen, Zhenhua & Rose, Adam Z. & Prager, Fynnwin & Chatterjee, Samrat, 2017. "Economic consequences of aviation system disruptions: A reduced-form computable general equilibrium analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 207-226.
    19. Jason Nassios & James A. Giesecke, 2018. "Informing Ex Ante Event Studies with Macro‐Econometric Evidence on the Structural and Policy Impacts of Terrorism," Risk Analysis, John Wiley & Sons, vol. 38(4), pages 804-825, April.
    20. Zhuoqun Gao & R. Richard Geddes & Tao Ma, 2020. "Direct and Indirect Economic Losses Using Typhoon-Flood Disaster Analysis: An Application to Guangdong Province, China," Sustainability, MDPI, vol. 12(21), pages 1-22, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:36:y:2016:i:10:p:1896-1915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.