IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i21p8980-d436692.html
   My bibliography  Save this article

Direct and Indirect Economic Losses Using Typhoon-Flood Disaster Analysis: An Application to Guangdong Province, China

Author

Listed:
  • Zhuoqun Gao

    (School of Management, Harbin Institute of Technology, Harbin 150001, China)

  • R. Richard Geddes

    (College of Human Ecology, Cornell University, Ithaca, NY 14850, USA)

  • Tao Ma

    (School of Management, Harbin Institute of Technology, Harbin 150001, China
    State Key Laboratory of Urban Water Resource and Environment, Harbin 150001, China)

Abstract

Guangdong Province is one of China’s largest and most developed regions. It is home to more than 113 million people and features unique geographical and climatic characteristics. Typhoons that pass through often result in heavy rainfall, which causes flooding. The region’s risk of typhoon and flood disasters, and the resulting indirect economic impacts, have not been fully assessed. The purpose of this paper is to introduce a method for assessing the spatial and temporal cumulative risk of typhoon-induced flood disasters, and the resulting indirect economic impacts, in order to deal with the uncertainty of disasters. We combined an analytic hierarchy process (AHP) and spatial analysis using a geographic information system (GIS) to produce a comprehensive weighted-risk assessment from three different aspects of disaster, vulnerability, and resilience, with 11 indicators. A new method for computing risk based on spatial and temporal cumulative patterns of typhoon-induced flood disasters was introduced. We incorporated those direct impacts into a computable general equilibrium (CGE) model to simulate indirect economic losses in alternative scenarios according to different risk levels. We found that the risk in the coastal area is significantly higher than that in the northern mountainous area. The coastal areas of western Guangdong, Pearl River Delta, and Chaoshan Plain face the greatest risk. Our results indicate that typhoon and flood disasters have negative effects on the real GDP, residents’ income, consumption, and several other macroeconomic indicators. We found differing disaster impacts across industrial sectors, including changes in the output, prices, and flow of labor among industries. Our estimates provide scientific support for environmental planning, spatial planning, and disaster-risk management in this important region. They are also of reference value for the development of disaster management strategies in similar climatic regions around the world.

Suggested Citation

  • Zhuoqun Gao & R. Richard Geddes & Tao Ma, 2020. "Direct and Indirect Economic Losses Using Typhoon-Flood Disaster Analysis: An Application to Guangdong Province, China," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8980-:d:436692
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/21/8980/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/21/8980/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kerry Emanuel, 2005. "Increasing destructiveness of tropical cyclones over the past 30 years," Nature, Nature, vol. 436(7051), pages 686-688, August.
    2. Adnan, Mohammed Sarfaraz Gani & Abdullah, Abu Yousuf Md & Dewan, Ashraf & Hall, Jim W., 2020. "The effects of changing land use and flood hazard on poverty in coastal Bangladesh," Land Use Policy, Elsevier, vol. 99(C).
    3. Elco E. Koks & Mark Thissen, 2016. "A Multiregional Impact Assessment Model for disaster analysis," Economic Systems Research, Taylor & Francis Journals, vol. 28(4), pages 429-449, October.
    4. Adam Rose & Shu‐Yi Liao, 2005. "Modeling Regional Economic Resilience to Disasters: A Computable General Equilibrium Analysis of Water Service Disruptions," Journal of Regional Science, Wiley Blackwell, vol. 45(1), pages 75-112, February.
    5. Norris, Fran H. & Tracy, Melissa & Galea, Sandro, 2009. "Looking for resilience: Understanding the longitudinal trajectories of responses to stress," Social Science & Medicine, Elsevier, vol. 68(12), pages 2190-2198, June.
    6. Jiayang Zhang & Yangbo Chen, 2019. "Risk Assessment of Flood Disaster Induced by Typhoon Rainstorms in Guangdong Province, China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    7. Stéphane Hallegatte, 2008. "An adaptive regional input-output model and its application to the assessment of the economic cost of Katrina," Post-Print hal-00716550, HAL.
    8. Simon Koesler & Michael Schymura, 2015. "Substitution Elasticities In A Constant Elasticity Of Substitution Framework - Empirical Estimates Using Nonlinear Least Squares," Economic Systems Research, Taylor & Francis Journals, vol. 27(1), pages 101-121, March.
    9. Ken Granger, 2003. "Quantifying Storm Tide Risk in Cairns," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(2), pages 165-185, October.
    10. Zhai, Fan & Hertel, Thomas, 2005. "Impacts of the Doha Development Agenda on China : the role of labor markets and complementary education reforms," Policy Research Working Paper Series 3702, The World Bank.
    11. Adam Rose, 2004. "Economic Principles, Issues, and Research Priorities in Hazard Loss Estimation," Advances in Spatial Science, in: Yasuhide Okuyama & Stephanie E. Chang (ed.), Modeling Spatial and Economic Impacts of Disasters, chapter 2, pages 13-36, Springer.
    12. Nobuhiro Hosoe & Kenji Gasawa & Hideo Hashimoto, 2010. "Textbook of Computable General Equilibrium Modelling," Palgrave Macmillan Books, Palgrave Macmillan, number 978-0-230-28165-3.
    13. Stéphane Hallegatte, 2008. "An Adaptive Regional Input‐Output Model and its Application to the Assessment of the Economic Cost of Katrina," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 779-799, June.
    14. Stefan Hajkowicz & Kerry Collins, 2007. "A Review of Multiple Criteria Analysis for Water Resource Planning and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1553-1566, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanfang Lyu & Yun Xiang & Dong Wang, 2023. "Evaluating Indirect Economic Losses from Flooding Using Input–Output Analysis: An Application to China’s Jiangxi Province," IJERPH, MDPI, vol. 20(5), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. E. Koks & M. Bočkarjova & H. de Moel & J. C. J. H. Aerts, 2015. "Integrated Direct and Indirect Flood Risk Modeling: Development and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 882-900, May.
    2. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    3. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    4. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    5. Rui Huang & Arunima Malik & Manfred Lenzen & Yutong Jin & Yafei Wang & Futu Faturay & Zhiyi Zhu, 2022. "Supply-chain impacts of Sichuan earthquake: a case study using disaster input–output analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2227-2248, February.
    6. David Mendoza‐Tinoco & Yixin Hu & Zhao Zeng & Konstantinos J. Chalvatzis & Ning Zhang & Albert E. Steenge & Dabo Guan, 2020. "Flood Footprint Assessment: A Multiregional Case of 2009 Central European Floods," Risk Analysis, John Wiley & Sons, vol. 40(8), pages 1612-1631, August.
    7. Selerio, Egberto & Maglasang, Renan, 2021. "Minimizing production loss consequent to disasters using a subsidy optimization model: a pandemic case," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 112-124.
    8. Hu, Xi & Pant, Raghav & Hall, Jim W. & Surminski, Swenja & Huang, Jiashun, 2019. "Multi-scale assessment of the economic impacts of flooding: evidence from firm to macro-level analysis in the Chinese manufacturing sector," LSE Research Online Documents on Economics 100534, London School of Economics and Political Science, LSE Library.
    9. Henriet, Fanny & Hallegatte, Stephane, 2008. "Assessing the Consequences of Natural Disasters on Production Networks: A Disaggregated Approach," Coalition Theory Network Working Papers 46657, Fondazione Eni Enrico Mattei (FEEM).
    10. Hiroyasu Inoue & Yasuyuki Todo, 2019. "Propagation of negative shocks across nation-wide firm networks," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-17, March.
    11. Balakrishnan, Srijith & Lim, Taehoon & Zhang, Zhanmin, 2022. "A methodology for evaluating the economic risks of hurricane-related disruptions to port operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 58-79.
    12. Trond G. Husby & Elco E. Koks, 2017. "Household migration in disaster impact analysis: incorporating behavioural responses to risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 287-305, May.
    13. Masato Yamazaki & Atsushi Koike & Yoshinori Sone, 2018. "A Heuristic Approach to the Estimation of Key Parameters for a Monthly, Recursive, Dynamic CGE Model," Economics of Disasters and Climate Change, Springer, vol. 2(3), pages 283-301, October.
    14. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    15. Jahn, Malte, 2013. "Economics of extreme weather events in cities: Terminology and regional impact models," HWWI Research Papers 143, Hamburg Institute of International Economics (HWWI).
    16. Irfan Ahmed & Claudio Socci & Rosita Pretaroli & Francesca Severini & Stefano Deriu, 2022. "Socioeconomic spillovers of the 2016–2017 Italian earthquakes: a bi-regional inoperability model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 426-453, January.
    17. Michael A. Hamilton & Tao Hong & Elizabeth Casman & Patrick L. Gurian, 2015. "Risk‐Based Decision Making for Reoccupation of Contaminated Areas Following a Wide‐Area Anthrax Release," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1348-1363, July.
    18. Otto, Christian & Willner, Sven Norman & Wenz, Leonie & Frieler, Katja & Levermann, Anders, 2017. "Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate," OSF Preprints 7yyhd, Center for Open Science.
    19. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    20. Inoue, Hiroyasu & Todo, Yasuyuki, 2017. "Firm-level simulation of supply chain disruption triggered by actual and predicted earthquakes," MPRA Paper 82920, University Library of Munich, Germany, revised 22 Feb 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8980-:d:436692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.