IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v65y2018i6-7p535-549.html
   My bibliography  Save this article

Production planning with multiple production lines: Forward algorithm and insights on process design for volume flexibility

Author

Listed:
  • Suresh Chand
  • Sunantha Teyarachakul Prime
  • Suresh Sethi

Abstract

This paper considers the production planning problem of a firm that produces a single product using a process that has multiple production lines (or machines) in parallel, each with a finite production capacity. Specifically, the firm has m parallel production lines, each with capacity of P units per period. If needed, the firm can adjust the production rate in a period by adjusting the number of lines it operates in the period. The firm faces time‐varying demands. The objective is to find a production plan that meets the demands over the problem horizon and minimizes the sum of setup, holding and variable production costs. The paper develops an efficient forward dynamic programming algorithm and uses it to develop managerial insights on the effect of process design on “volume flexibility,” which is defined as “the ability to be operated profitably at different output levels.” Some forecast horizon results are also developed. The firm can use the results in the paper to optimize the process design for the demand it faces.

Suggested Citation

  • Suresh Chand & Sunantha Teyarachakul Prime & Suresh Sethi, 2018. "Production planning with multiple production lines: Forward algorithm and insights on process design for volume flexibility," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(6-7), pages 535-549, September.
  • Handle: RePEc:wly:navres:v:65:y:2018:i:6-7:p:535-549
    DOI: 10.1002/nav.21817
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.21817
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.21817?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    2. Robert W. Grubbström & Brian G. Kingsman, 2004. "Ordering and Inventory Policies for Step Changes in the Unit Item Cost: A Discounted Cash Flow Approach," Management Science, INFORMS, vol. 50(2), pages 253-267, February.
    3. Suresh Chand & Vernon Ning Hsu & Suresh Sethi, 2002. "Forecast, Solution, and Rolling Horizons in Operations Management Problems: A Classified Bibliography," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 25-43, September.
    4. Suresh Sethi & Suresh Chand, 1981. "Multiple Finite Production Rate Dynamic Lot Size Inventory Models," Operations Research, INFORMS, vol. 29(5), pages 931-944, October.
    5. Evan L. Porteus, 1985. "Investing in Reduced Setups in the EOQ Model," Management Science, INFORMS, vol. 31(8), pages 998-1010, August.
    6. Suresh Chand & Thomas E. Morton, 1986. "Minimal forecast horizon procedures for dynamic lot size models," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 33(1), pages 111-122, February.
    7. Song, Yuyue & Chan, Gin Hor, 2005. "Single item lot-sizing problems with backlogging on a single machine at a finite production rate," European Journal of Operational Research, Elsevier, vol. 161(1), pages 191-202, February.
    8. Roger M. Hill, 1997. "Note: Dynamic lot sizing for a finite rate input process," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(2), pages 221-228, March.
    9. Awi Federgruen & Michal Tzur, 1991. "A Simple Forward Algorithm to Solve General Dynamic Lot Sizing Models with n Periods in 0(n log n) or 0(n) Time," Management Science, INFORMS, vol. 37(8), pages 909-925, August.
    10. Chung-Yee Lee & Eric V. Denardo, 1986. "Rolling Planning Horizons: Error Bounds for the Dynamic Lot Size Model," Mathematics of Operations Research, INFORMS, vol. 11(3), pages 423-432, August.
    11. Amit Bardhan & Milind Dawande & Srinagesh Gavirneni & Yinping Mu & Suresh Sethi, 2013. "Forecast and rolling horizons under demand substitution and production changeovers: analysis and insights," IISE Transactions, Taylor & Francis Journals, vol. 45(3), pages 323-340.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuying Jing & Zirui Lan, 2017. "Forecast horizon of multi-item dynamic lot size model with perishable inventory," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-15, November.
    2. Suresh Chand & Vernon Ning Hsu & Suresh Sethi, 2002. "Forecast, Solution, and Rolling Horizons in Operations Management Problems: A Classified Bibliography," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 25-43, September.
    3. Grubbström, Robert W., 2014. "Dynamic lotsizing with a finite production rate," International Journal of Production Economics, Elsevier, vol. 149(C), pages 68-79.
    4. Michael Bastian, 1992. "A perfect lot‐tree procedure for the discounted dynamic lot‐size problem with speculation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(5), pages 651-668, August.
    5. Archis Ghate & Robert L. Smith, 2009. "Optimal Backlogging Over an Infinite Horizon Under Time-Varying Convex Production and Inventory Costs," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 362-368, June.
    6. Milind Dawande & Srinagesh Gavirneni & Sanjeewa Naranpanawe & Suresh Sethi, 2007. "Forecast Horizons for a Class of Dynamic Lot-Size Problems Under Discrete Future Demand," Operations Research, INFORMS, vol. 55(4), pages 688-702, August.
    7. Chung-Yee Lee & Sila Çetinkaya & Albert P. M. Wagelmans, 2001. "A Dynamic Lot-Sizing Model with Demand Time Windows," Management Science, INFORMS, vol. 47(10), pages 1384-1395, October.
    8. Awi Federgruen & Michal Tzur, 1996. "Detection of minimal forecast horizons in dynamic programs with multiple indicators of the future," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(2), pages 169-189, March.
    9. Jing, Fuying & Chao, Xiangrui, 2022. "Forecast horizons for a two-echelon dynamic lot-sizing problem," Omega, Elsevier, vol. 110(C).
    10. Marshall Fisher & Kamalini Ramdas & Yu-Sheng Zheng, 2001. "Ending Inventory Valuation in Multiperiod Production Scheduling," Management Science, INFORMS, vol. 47(5), pages 679-692, May.
    11. Beatriz Abdul-Jalbar & Roberto Dorta-Guerra & José M. Gutiérrez & Joaquín Sicilia, 2021. "Production/Inventory Policies for a Two-Echelon System with Credit Period Incentives," Mathematics, MDPI, vol. 9(15), pages 1-25, July.
    12. Siao-Leu Phouratsamay & Safia Kedad-Sidhoum & Fanny Pascual, 2021. "Coordination of a two-level supply chain with contracts," 4OR, Springer, vol. 19(2), pages 235-264, June.
    13. Wolosewicz, Cathy & Dauzère-Pérès, Stéphane & Aggoune, Riad, 2015. "A Lagrangian heuristic for an integrated lot-sizing and fixed scheduling problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 3-12.
    14. Charles, Mehdi & Dauzère-Pérès, Stéphane & Kedad-Sidhoum, Safia & Mazhoud, Issam, 2022. "Motivations and analysis of the capacitated lot-sizing problem with setup times and minimum and maximum ending inventories," European Journal of Operational Research, Elsevier, vol. 302(1), pages 203-220.
    15. Ming Zhao & Minjiao Zhang, 2020. "Multiechelon Lot Sizing: New Complexities and Inequalities," Operations Research, INFORMS, vol. 68(2), pages 534-551, March.
    16. Stan van Hoesel & H. Edwin Romeijn & Dolores Romero Morales & Albert P. M. Wagelmans, 2005. "Integrated Lot Sizing in Serial Supply Chains with Production Capacities," Management Science, INFORMS, vol. 51(11), pages 1706-1719, November.
    17. Stanislaw Bylka, 1997. "Strong turnpike policies in the single‐item capacitated lot‐sizing problem with periodical dynamic parameter," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(8), pages 775-790, December.
    18. Toy, Ayhan Özgür & Berk, Emre, 2013. "Dynamic lot sizing for a warm/cold process: Heuristics and insights," International Journal of Production Economics, Elsevier, vol. 145(1), pages 53-66.
    19. Hark‐Chin Hwang & Wilco van den Heuvel, 2012. "Improved algorithms for a lot‐sizing problem with inventory bounds and backlogging," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(3‐4), pages 244-253, April.
    20. Tempelmeier, Horst, 2007. "On the stochastic uncapacitated dynamic single-item lotsizing problem with service level constraints," European Journal of Operational Research, Elsevier, vol. 181(1), pages 184-194, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:65:y:2018:i:6-7:p:535-549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.