IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v47y2000i2p145-165.html
   My bibliography  Save this article

Scheduling jobs and maintenance activities on parallel machines

Author

Listed:
  • Chung‐Yee Lee
  • Zhi‐Long Chen

Abstract

Most machine scheduling models assume that the machines are available all of the time. However, in most realistic situations, machines need to be maintained and hence may become unavailable during certain periods. In this paper, we study the problem of processing a set of n jobs on m parallel machines where each machine must be maintained once during the planning horizon. Our objective is to schedule jobs and maintenance activities so that the total weighted completion time of jobs is minimized. Two cases are studied in this paper. In the first case, there are sufficient resources so that different machines can be maintained simultaneously if necessary. In the second case, only one machine can be maintained at any given time. In this paper, we first show that, even when all jobs have the same weight, both cases of the problem are NP‐hard. We then propose branch and bound algorithms based on the column generation approach for solving both cases of the problem. Our algorithms are capable of optimally solving medium sized problems within a reasonable computational time. We note that the general problem where at most j machines, 1 ≤ j ≤ m, can be maintained simultaneously, can be solved similarly by the column generation approach proposed in this paper. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 145–165, 2000

Suggested Citation

  • Chung‐Yee Lee & Zhi‐Long Chen, 2000. "Scheduling jobs and maintenance activities on parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(2), pages 145-165, March.
  • Handle: RePEc:wly:navres:v:47:y:2000:i:2:p:145-165
    DOI: 10.1002/(SICI)1520-6750(200003)47:23.0.CO;2-3
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1520-6750(200003)47:23.0.CO;2-3
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1520-6750(200003)47:23.0.CO;2-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin Desrochers & Jacques Desrosiers & Marius Solomon, 1992. "A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 40(2), pages 342-354, April.
    2. Chen, Zhi-Long & Powell, Warren B., 1999. "A column generation based decomposition algorithm for a parallel machine just-in-time scheduling problem," European Journal of Operational Research, Elsevier, vol. 116(1), pages 220-232, July.
    3. Zhi-Long Chen & Warren B. Powell, 1999. "Solving Parallel Machine Scheduling Problems by Column Generation," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 78-94, February.
    4. Dirk Cattrysse & Marc Salomon & Roelof Kuik & Luk N. Van Wassenhove, 1993. "A Dual Ascent and Column Generation Heuristic for the Discrete Lotsizing and Scheduling Problem with Setup Times," Management Science, INFORMS, vol. 39(4), pages 477-486, April.
    5. Lap Mui Ann Chan & Ana Muriel & David Simchi-Levi, 1998. "Parallel Machine Scheduling, Linear Programming, and Parameter List Scheduling Heuristics," Operations Research, INFORMS, vol. 46(5), pages 729-741, October.
    6. Michael H. Rothkopf, 1966. "Scheduling Independent Tasks on Parallel Processors," Management Science, INFORMS, vol. 12(5), pages 437-447, January.
    7. A. M. A. Hariri & C. N. Potts & L. N. Van Wassenhove, 1995. "Single Machine Scheduling to Minimize Total Weighted Late Work," INFORMS Journal on Computing, INFORMS, vol. 7(2), pages 232-242, May.
    8. J. M. van den Akker & J. A. Hoogeveen & S. L. van de Velde, 1999. "Parallel Machine Scheduling by Column Generation," Operations Research, INFORMS, vol. 47(6), pages 862-872, December.
    9. Lavoie, Sylvie & Minoux, Michel & Odier, Edouard, 1988. "A new approach for crew pairing problems by column generation with an application to air transportation," European Journal of Operational Research, Elsevier, vol. 35(1), pages 45-58, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Ran & Wang, Jun-Qiang & Oulamara, Ammar, 2023. "Online scheduling on parallel-batch machines with periodic availability constraints and job delivery," Omega, Elsevier, vol. 116(C).
    2. Yarlin Kuo & Zi‐Ann Chang, 2007. "Integrated production scheduling and preventive maintenance planning for a single machine under a cumulative damage failure process," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 602-614, September.
    3. M Ozlen & M Azizoğlu, 2011. "Rescheduling unrelated parallel machines with total flow time and total disruption cost criteria," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 152-164, January.
    4. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    5. Geurtsen, M. & Didden, Jeroen B.H.C. & Adan, J. & Atan, Z. & Adan, I., 2023. "Production, maintenance and resource scheduling: A review," European Journal of Operational Research, Elsevier, vol. 305(2), pages 501-529.
    6. Asaf Levin & Gur Mosheiov & Assaf Sarig, 2009. "Scheduling a maintenance activity on parallel identical machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(1), pages 33-41, February.
    7. Pohl, Maximilian & Kolisch, Rainer & Schiffer, Maximilian, 2021. "Runway scheduling during winter operations," Omega, Elsevier, vol. 102(C).
    8. Boccia, Maurizio & Masone, Adriano & Sterle, Claudio & Murino, Teresa, 2023. "The parallel AGV scheduling problem with battery constraints: A new formulation and a matheuristic approach," European Journal of Operational Research, Elsevier, vol. 307(2), pages 590-603.
    9. J-J Wang & J-B Wang & F Liu, 2011. "Parallel machines scheduling with a deteriorating maintenance activity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1898-1902, October.
    10. Behrooz Shahbazi & Seyed Habib A. Rahmati, 2021. "Developing a Flexible Manufacturing Control System Considering Mixed Uncertain Predictive Maintenance Model: a Simulation-Based Optimization Approach," SN Operations Research Forum, Springer, vol. 2(4), pages 1-43, December.
    11. Zhi‐Long Chen & Warren B. Powell, 2003. "Exact algorithms for scheduling multiple families of jobs on parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(7), pages 823-840, October.
    12. Wenchang Luo & Yao Xu & Weitian Tong & Guohui Lin, 2019. "Single-machine scheduling with job-dependent machine deterioration," Journal of Scheduling, Springer, vol. 22(6), pages 691-707, December.
    13. Xiuli Wang & T. C. Edwin Cheng, 2007. "Machine scheduling with an availability constraint and job delivery coordination," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(1), pages 11-20, February.
    14. K. H. Adjallah & K. P. Adzakpa, 2007. "Minimizing maintenance cost involving flow-time and tardiness penalty with unequal release dates," Journal of Risk and Reliability, , vol. 221(1), pages 57-65, March.
    15. Abdelhamid Boudjelida, 2019. "On the robustness of joint production and maintenance scheduling in presence of uncertainties," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1515-1530, April.
    16. Kerem Bülbül & Philip Kaminsky & Candace Yano, 2004. "Flow shop scheduling with earliness, tardiness, and intermediate inventory holding costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(3), pages 407-445, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marjan van den Akker & Han Hoogeveen & Steef van de Velde, 2002. "Combining Column Generation and Lagrangean Relaxation to Solve a Single-Machine Common Due Date Problem," INFORMS Journal on Computing, INFORMS, vol. 14(1), pages 37-51, February.
    2. Pereira Lopes, Manuel J. & de Carvalho, J.M. Valerio, 2007. "A branch-and-price algorithm for scheduling parallel machines with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1508-1527, February.
    3. Zhi‐Long Chen & Warren B. Powell, 2003. "Exact algorithms for scheduling multiple families of jobs on parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(7), pages 823-840, October.
    4. Kerem Bülbül & Philip Kaminsky & Candace Yano, 2004. "Flow shop scheduling with earliness, tardiness, and intermediate inventory holding costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(3), pages 407-445, April.
    5. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    6. Daniel Kowalczyk & Roel Leus, 2018. "A Branch-and-Price Algorithm for Parallel Machine Scheduling Using ZDDs and Generic Branching," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 768-782, November.
    7. Biskup, Dirk & Herrmann, Jan & Gupta, Jatinder N.D., 2008. "Scheduling identical parallel machines to minimize total tardiness," International Journal of Production Economics, Elsevier, vol. 115(1), pages 134-142, September.
    8. Degraeve, Z. & Jans, R.F., 2003. "A New Dantzig-Wolfe Reformulation And Branch-And-Price Algorithm For The Capacitated Lot Sizing Problem With Set Up Times," ERIM Report Series Research in Management ERS-2003-010-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    9. Plateau, M.-C. & Rios-Solis, Y.A., 2010. "Optimal solutions for unrelated parallel machines scheduling problems using convex quadratic reformulations," European Journal of Operational Research, Elsevier, vol. 201(3), pages 729-736, March.
    10. Jans, Raf, 2010. "Classification of Dantzig-Wolfe reformulations for binary mixed integer programming problems," European Journal of Operational Research, Elsevier, vol. 204(2), pages 251-254, July.
    11. Chen, Zhi-Long & Lee, Chung-Yee, 2002. "Parallel machine scheduling with a common due window," European Journal of Operational Research, Elsevier, vol. 136(3), pages 512-527, February.
    12. Stéphane Dauzère-Pérès & Sigrid Lise Nonås, 2023. "An improved decision support model for scheduling production in an engineer-to-order manufacturer," 4OR, Springer, vol. 21(2), pages 247-300, June.
    13. Chen, Zhi-Long & Powell, Warren B., 1999. "A column generation based decomposition algorithm for a parallel machine just-in-time scheduling problem," European Journal of Operational Research, Elsevier, vol. 116(1), pages 220-232, July.
    14. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    15. Halil Şen & Kerem Bülbül, 2015. "A Strong Preemptive Relaxation for Weighted Tardiness and Earliness/Tardiness Problems on Unrelated Parallel Machines," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 135-150, February.
    16. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    17. Malgorzata Sterna & Kateryna Czerniachowska, 2017. "Polynomial Time Approximation Scheme for Two Parallel Machines Scheduling with a Common Due Date to Maximize Early Work," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 927-944, September.
    18. Yuan Zhang & Jinjiang Yuan, 2019. "A note on a two-agent scheduling problem related to the total weighted late work," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 989-999, April.
    19. Dunstall, Simon & Wirth, Andrew, 2005. "A comparison of branch-and-bound algorithms for a family scheduling problem with identical parallel machines," European Journal of Operational Research, Elsevier, vol. 167(2), pages 283-296, December.
    20. Yunqiang Yin & Jianyou Xu & T. C. E. Cheng & Chin‐Chia Wu & Du‐Juan Wang, 2016. "Approximation schemes for single‐machine scheduling with a fixed maintenance activity to minimize the total amount of late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(2), pages 172-183, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:47:y:2000:i:2:p:145-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.