IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v47y2000i1p1-17.html
   My bibliography  Save this article

Optimal service and arrival rates in Jackson queueing networks

Author

Listed:
  • Kurt M. Bretthauer

Abstract

In this paper we present an algorithm for solving a class of queueing network design problems. Specifically, we focus on determining both service and arrival rates in an open Jackson network of queueing stations. This class of problems has been widely studied and used in a variety of applications, but not well solved due to the difficulty of the resulting optimization problems. As an example, consider the classic application in computer network design which involves determining the minimum cost line capacities and flow assignments while satisfying a queueing performance measure such as an upper limit on transmission delay. Other application areas requiring the selection of both service and arrival rates in a network of queues include the design of communication, manufacturing, and health care systems. These applications yield optimization problems that are difficult to solve because typically they are nonconvex, which means they may have many locally optimal solutions that are not necessarily globally optimal. Therefore, to obtain a globally optimal solution, we develop an efficient branch and bound algorithm that takes advantage of the problem structure. Computational testing on randomly generated problems and actual problems from a health care organization indicate that the algorithm is able to solve realistic sized problems in reasonable computing time on a laptop computer. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 1–17, 2000

Suggested Citation

  • Kurt M. Bretthauer, 2000. "Optimal service and arrival rates in Jackson queueing networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(1), pages 1-17, February.
  • Handle: RePEc:wly:navres:v:47:y:2000:i:1:p:1-17
    DOI: 10.1002/(SICI)1520-6750(200002)47:13.0.CO;2-1
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1520-6750(200002)47:13.0.CO;2-1
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1520-6750(200002)47:13.0.CO;2-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas B. Crabill & Donald Gross & Michael J. Magazine, 1977. "A Classified Bibliography of Research on Optimal Design and Control of Queues," Operations Research, INFORMS, vol. 25(2), pages 219-232, April.
    2. Gabriel R. Bitran & Devanath Tirupati, 1988. "Multiproduct Queueing Networks with Deterministic Routing: Decomposition Approach and the Notion of Interference," Management Science, INFORMS, vol. 34(1), pages 75-100, January.
    3. James R. Jackson, 1963. "Jobshop-Like Queueing Systems," Management Science, INFORMS, vol. 10(1), pages 131-142, October.
    4. James R. Jackson, 1957. "Networks of Waiting Lines," Operations Research, INFORMS, vol. 5(4), pages 518-521, August.
    5. Shaler Stidham, 1992. "Pricing and Capacity Decisions for a Service Facility: Stability and Multiple Local Optima," Management Science, INFORMS, vol. 38(8), pages 1121-1139, August.
    6. Austin J. Lemoine, 1977. "State-of-the-Art--Networks of Queues--A Survey of Equilibrium Analysis," Management Science, INFORMS, vol. 24(4), pages 464-481, December.
    7. Kurt M. Bretthauer & Bala Shetty, 1995. "The Nonlinear Resource Allocation Problem," Operations Research, INFORMS, vol. 43(4), pages 670-683, August.
    8. Sanjeev Dewan & Haim Mendelson, 1990. "User Delay Costs and Internal Pricing for a Service Facility," Management Science, INFORMS, vol. 36(12), pages 1502-1517, December.
    9. Gabriel R. Bitran & Devanath Tirupati, 1989. "Tradeoff Curves, Targeting and Balancing in Manufacturing Queueing Networks," Operations Research, INFORMS, vol. 37(4), pages 547-564, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    2. Morabito, Reinaldo & de Souza, Mauricio C. & Vazquez, Mariana, 2014. "Approximate decomposition methods for the analysis of multicommodity flow routing in generalized queuing networks," European Journal of Operational Research, Elsevier, vol. 232(3), pages 618-629.
    3. Bretthauer, Kurt M., 1996. "Capacity planning in manufacturing and computer networks," European Journal of Operational Research, Elsevier, vol. 91(2), pages 386-394, June.
    4. Bitran, Gabriel R. & Morabito, Reinaldo., 1994. "Open queueing networks : optimization and performance evaluation models for discrete manufacturing systems," Working papers 3743-94., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    5. Jae‐Dong Son & Yaghoub Khojasteh Ghamari, 2008. "Optimal admission and pricing control problems in service industries with multiple servers and sideline profit," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(4), pages 325-342, July.
    6. Francisco Castro & Hamid Nazerzadeh & Chiwei Yan, 2020. "Matching queues with reneging: a product form solution," Queueing Systems: Theory and Applications, Springer, vol. 96(3), pages 359-385, December.
    7. Pradhan, Salil & Damodaran, Purushothaman & Srihari, Krishnaswami, 2008. "Predicting performance measures for Markovian type of manufacturing systems with product failures," European Journal of Operational Research, Elsevier, vol. 184(2), pages 725-744, January.
    8. van Ackere, Ann, 1995. "Capacity management: Pricing strategy, performance and the role of information," International Journal of Production Economics, Elsevier, vol. 40(1), pages 89-100, June.
    9. Sauer Cornelia & Daduna Hans, 2003. "Availability Formulas and Performance Measures for Separable Degradable Networks," Stochastics and Quality Control, De Gruyter, vol. 18(2), pages 165-194, January.
    10. Wu, Kan & McGinnis, Leon, 2012. "Performance evaluation for general queueing networks in manufacturing systems: Characterizing the trade-off between queue time and utilization," European Journal of Operational Research, Elsevier, vol. 221(2), pages 328-339.
    11. Tamer Boyaci & Saibal Ray, 2003. "Product Differentiation and Capacity Cost Interaction in Time and Price Sensitive Markets," Manufacturing & Service Operations Management, INFORMS, vol. 5(1), pages 18-36, May.
    12. Wang, E. T. G., 2000. "Information and incentives in computing services supply: The effect of limited system choices," European Journal of Operational Research, Elsevier, vol. 125(3), pages 503-518, September.
    13. Wenhui Zhou & Weixiang Huang & Vernon N. Hsu & Pengfei Guo, 2023. "On the Benefit of Privatization in a Mixed Duopoly Service System," Management Science, INFORMS, vol. 69(3), pages 1486-1499, March.
    14. Christian Haxholdt & Erik R. Larsen & Ann van Ackere, 2003. "Mode Locking and Chaos in a Deterministic Queueing Model with Feedback," Management Science, INFORMS, vol. 49(6), pages 816-830, June.
    15. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    16. Jayaswal, Sachin & Jewkes, Elizabeth & Ray, Saibal, 2011. "Product differentiation and operations strategy in a capacitated environment," European Journal of Operational Research, Elsevier, vol. 210(3), pages 716-728, May.
    17. Sumi Kim & Seongmoon Kim, 2015. "Differentiated waiting time management according to patient class in an emergency care center using an open Jackson network integrated with pooling and prioritizing," Annals of Operations Research, Springer, vol. 230(1), pages 35-55, July.
    18. John S. Hollywood, 2005. "An approximate planning model for distributed computing networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(6), pages 590-605, September.
    19. Wu, Kan & Zhao, Ning, 2015. "Dependence among single stations in series and its applications in productivity improvement," European Journal of Operational Research, Elsevier, vol. 247(1), pages 245-258.
    20. Jayaswal, Sachin, 2014. "Priority Service System Optimization under Service Level Constraints," IIMA Working Papers WP2014-08-04, Indian Institute of Management Ahmedabad, Research and Publication Department.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:47:y:2000:i:1:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.