IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v1y2011i4p324-334.html
   My bibliography  Save this article

Biomass energy with carbon capture and storage (BECCS or Bio‐CCS)

Author

Listed:
  • Clair Gough
  • Paul Upham

Abstract

In terms of climate mitigation options, the theoretical potential of biomass energy with carbon capture and storage (BECCS) is substantial; introducing the prospect of negative emissions, it offers the vision of drawing atmospheric CO 2 concentrations back down to pre‐industrial levels. This paper reviews issues raised at a workshop on BECCS, convened in Scotland in late 2009. Presentations by bioenergy and CCS specialists covered topics including the climate policy rationale for BECCS, global biomass CCS potential, the UK potential for BECCS, the risk of fossil fuel lock‐in via coal co‐firing, and carbon market issues. In practice, the scale of the forestry and accessible CCS infrastructure required are among the obstacles to the large‐scale deployment of BECCS in the near term. While biomass co‐firing with coal offers an early route to BECCS, a quite substantial (>20%) biomass component may be necessary to achieve negative emissions in a co‐fired CCS system. Smaller scale BECCS, through co‐location of dedicated or co‐combusted biomass on fossil CCS CO 2 transport pipeline routes, is easier to envisage and would be potentially less problematic. Hence, we judge that BECCS can, and likely will, play a role in carbon reduction, but care needs to be taken not to exaggerate its potential, given that (i) there are few studies of the cost of connecting bio‐processing (combustion, gasification or other) infrastructure with CO 2 storage sites and (ii) that scenarios of global bioenergy potential remain contentious. © 2011 Society of Chemical Industry and John Wiley & Sons, Ltd

Suggested Citation

  • Clair Gough & Paul Upham, 2011. "Biomass energy with carbon capture and storage (BECCS or Bio‐CCS)," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 1(4), pages 324-334, December.
  • Handle: RePEc:wly:greenh:v:1:y:2011:i:4:p:324-334
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mercure, Jean-François & Salas, Pablo, 2012. "An assessement of global energy resource economic potentials," Energy, Elsevier, vol. 46(1), pages 322-336.
    2. Levidow, Les & Borda-Rodriguez, Alexander & Papaioannou, Theo, 2014. "UK bioenergy innovation priorities: Making expectations credible in state-industry arenas," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 191-204.
    3. Huan Wang & Wenying Chen & Hongjun Zhang & Nan Li, 2020. "Modeling of power sector decarbonization in China: comparisons of early and delayed mitigation towards 2-degree target," Climatic Change, Springer, vol. 162(4), pages 1843-1856, October.
    4. Jagu Schippers, Emma & Massol, Olivier, 2022. "Unlocking CO2 infrastructure deployment: The impact of carbon removal accounting," Energy Policy, Elsevier, vol. 171(C).
    5. Klaus, Geraldine & Ernst, Andreas & Oswald, Lisa, 2020. "Psychological factors influencing laypersons’ acceptance of climate engineering, climate change mitigation and business as usual scenarios," Technology in Society, Elsevier, vol. 60(C).
    6. Burke, Joshua & Gambhir, Ajay, 2022. "Policy incentives for greenhouse gas removal techniques: the risks of premature inclusion in carbon markets and the need for a multi-pronged policy framework," LSE Research Online Documents on Economics 115010, London School of Economics and Political Science, LSE Library.
    7. Yi Hu & Xiaoshan Li & Ji Liu & Liwei Li & Liqi Zhang, 2018. "Experimental investigation of CO2 absorption enthalpy in conventional imidazolium ionic liquids," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(4), pages 713-720, August.
    8. Haro, Pedro & Aracil, Cristina & Vidal-Barrero, Fernando & Ollero, Pedro, 2015. "Rewarding of extra-avoided GHG emissions in thermochemical biorefineries incorporating Bio-CCS," Applied Energy, Elsevier, vol. 157(C), pages 255-266.
    9. Fridahl, Mathias, 2017. "Socio-political prioritization of bioenergy with carbon capture and storage," Energy Policy, Elsevier, vol. 104(C), pages 89-99.
    10. Udayan Singh & Erica M. Loudermilk & Lisa M. Colosi, 2021. "Accounting for the role of transport and storage infrastructure costs in carbon negative bioenergy deployment," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 144-164, February.
    11. García-Díez, E. & García-Labiano, F. & de Diego, L.F. & Abad, A. & Gayán, P. & Adánez, J. & Ruíz, J.A.C., 2016. "Optimization of hydrogen production with CO2 capture by autothermal chemical-looping reforming using different bioethanol purities," Applied Energy, Elsevier, vol. 169(C), pages 491-498.
    12. Deetman, Sebastiaan & Hof, Andries F. & Pfluger, Benjamin & van Vuuren, Detlef P. & Girod, Bastien & van Ruijven, Bas J., 2013. "Deep greenhouse gas emission reductions in Europe: Exploring different options," Energy Policy, Elsevier, vol. 55(C), pages 152-164.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:1:y:2011:i:4:p:324-334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.