IDEAS home Printed from https://ideas.repec.org/a/vrs/jsesro/v12y2023i2p88-108n6.html
   My bibliography  Save this article

Clustering the AI Landscape: Navigating Global Insights from Leading AI Indexes

Author

Listed:
  • Manta Eduard Mihai
  • Bogoevici Flavia

    (Doctoral School of Cybernetics and Statistics, The Bucharest University of Economic Studies, Romania)

Abstract

This study develops a scorecard validation model for evaluating key Artificial Intelligence (AI) indexes, aiming to provide a comprehensive framework for assessing the multifaceted nature of AI development. Focusing on four significant AI indexes and one AI report from 2021 to 2023, the research employs both expert judgment and advanced text mining techniques, including k-means clustering. This dual approach facilitates a detailed examination of AI indexes, highlighting their strengths, weaknesses, and overall market comprehensiveness. The findings contribute to understanding the AI sector’s evolution, offering critical insights for policy formulation and strategic decision-making in AI. Acknowledging the inherent subjectivity in the evaluation process and potential data biases, the paper suggests future research avenues, including cross-sectoral and regional analyses of AI trends and a deeper exploration of ethical considerations in AI. This study serves as a valuable resource for stakeholders navigating the complex AI landscape, providing a structured method for comparing and understanding AI advancements.

Suggested Citation

  • Manta Eduard Mihai & Bogoevici Flavia, 2023. "Clustering the AI Landscape: Navigating Global Insights from Leading AI Indexes," Journal of Social and Economic Statistics, Sciendo, vol. 12(2), pages 88-108, December.
  • Handle: RePEc:vrs:jsesro:v:12:y:2023:i:2:p:88-108:n:6
    DOI: 10.2478/jses-2023-0011
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/jses-2023-0011
    Download Restriction: no

    File URL: https://libkey.io/10.2478/jses-2023-0011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Artem Bequé & Kristof Coussement & Ross Gayler & Stefan Lessmann, 2017. "Approaches for credit scorecard calibration: An empirical analysis," Post-Print hal-01745262, HAL.
    2. Crone, Sven F. & Lessmann, Stefan & Stahlbock, Robert, 2006. "The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing," European Journal of Operational Research, Elsevier, vol. 173(3), pages 781-800, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wosnitza, Jan Henrik, 2022. "Calibration alternatives to logistic regression and their potential for transferring the dispersion of discriminatory power into uncertainties of probabilities of default," Discussion Papers 04/2022, Deutsche Bundesbank.
    2. Lee, In Gyu & Yoon, Sang Won & Won, Daehan, 2022. "A Mixed Integer Linear Programming Support Vector Machine for Cost-Effective Group Feature Selection: Branch-Cut-and-Price Approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1055-1068.
    3. Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
    4. Georgios Marinakos & Sophia Daskalaki, 2017. "Imbalanced customer classification for bank direct marketing," Journal of Marketing Analytics, Palgrave Macmillan, vol. 5(1), pages 14-30, March.
    5. Coussement, Kristof & De Bock, Koen W., 2013. "Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning," Journal of Business Research, Elsevier, vol. 66(9), pages 1629-1636.
    6. Brandner, Hubertus & Lessmann, Stefan & Voß, Stefan, 2013. "A memetic approach to construct transductive discrete support vector machines," European Journal of Operational Research, Elsevier, vol. 230(3), pages 581-595.
    7. Siyi Wang & Xing Yan & Bangqi Zheng & Hu Wang & Wangli Xu & Nanbo Peng & Qi Wu, 2021. "Risk and return prediction for pricing portfolios of non-performing consumer credit," Papers 2110.15102, arXiv.org.
    8. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    9. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    10. Coussement, Kristof & Van den Bossche, Filip A.M. & De Bock, Koen W., 2014. "Data accuracy's impact on segmentation performance: Benchmarking RFM analysis, logistic regression, and decision trees," Journal of Business Research, Elsevier, vol. 67(1), pages 2751-2758.
    11. K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
    12. Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
    13. Lessmann, Stefan & Coussement, Kristof & De Bock, Koen W. & Haupt, Johannes, 2018. "Targeting customers for profit: An ensemble learning framework to support marketing decision making," IRTG 1792 Discussion Papers 2018-012, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    14. Ding‐Wen Tan & William Yeoh & Yee Ling Boo & Soung‐Yue Liew, 2013. "The Impact Of Feature Selection: A Data‐Mining Application In Direct Marketing," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(1), pages 23-38, January.
    15. Stefan Lessmann & Stefan Voß, 2010. "Customer-Centric Decision Support," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(2), pages 79-93, April.
    16. Coussement, Kristof & Buckinx, Wouter, 2011. "A probability-mapping algorithm for calibrating the posterior probabilities: A direct marketing application," European Journal of Operational Research, Elsevier, vol. 214(3), pages 732-738, November.
    17. Chen, Zhen-Yu & Fan, Zhi-Ping & Sun, Minghe, 2012. "A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data," European Journal of Operational Research, Elsevier, vol. 223(2), pages 461-472.
    18. Fan, Zhi-Ping & Sun, Minghe, 2015. "Behavior-aware user response modeling in social media: Learning from diverse heterogeneous dataAuthor-Name: Chen, Zhen-Yu," European Journal of Operational Research, Elsevier, vol. 241(2), pages 422-434.
    19. Ibrahim Al-Shourbaji & Pramod H. Kachare & Samah Alshathri & Salahaldeen Duraibi & Bushra Elnaim & Mohamed Abd Elaziz, 2022. "An Efficient Parallel Reptile Search Algorithm and Snake Optimizer Approach for Feature Selection," Mathematics, MDPI, vol. 10(13), pages 1-20, July.
    20. David Olson & Qing Cao & Ching Gu & Donhee Lee, 2009. "Comparison of customer response models," Service Business, Springer;Pan-Pacific Business Association, vol. 3(2), pages 117-130, June.

    More about this item

    Keywords

    AI; text analysis; scorecard validation; AI indexes; content analysis;
    All these keywords.

    JEL classification:

    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • J01 - Labor and Demographic Economics - - General - - - Labor Economics: General
    • M19 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Other
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:jsesro:v:12:y:2023:i:2:p:88-108:n:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.