IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v10y2022i1p270-289n15.html
   My bibliography  Save this article

Fast inference methods for high-dimensional factor copulas

Author

Listed:
  • Verhoijsen Alex
  • Krupskiy Pavel

    (School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia)

Abstract

Gaussian factor models allow the statistician to capture multivariate dependence between variables. However, they are computationally cumbersome in high dimensions and are not able to capture multivariate skewness in the data. We propose a copula model that allows for arbitrary margins, and multivariate skewness in the data by including a non-Gaussian factor whose dependence structure is the result of a one-factor copula model. Estimation is carried out using a two-step procedure: margins are modelled separately and transformed to the normal scale, after which the dependence structure is estimated. We develop an estimation procedure that allows for fast estimation of the model parameters in a high-dimensional setting. We first prove the theoretical results of the model with up to three Gaussian factors. Then, simulation results confirm that the model works as the sample size and dimensionality grow larger. Finally, we apply the model to a selection of stocks of the S&P500, which demonstrates that our model is able to capture cross-sectional skewness in the stock market data.

Suggested Citation

  • Verhoijsen Alex & Krupskiy Pavel, 2022. "Fast inference methods for high-dimensional factor copulas," Dependence Modeling, De Gruyter, vol. 10(1), pages 270-289, January.
  • Handle: RePEc:vrs:demode:v:10:y:2022:i:1:p:270-289:n:15
    DOI: 10.1515/demo-2022-0117
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2022-0117
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2022-0117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    2. Dong Hwan Oh & Andrew J. Patton, 2018. "Time-Varying Systemic Risk: Evidence From a Dynamic Copula Model of CDS Spreads," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(2), pages 181-195, April.
    3. Dong Hwan Oh & Andrew J. Patton, 2017. "Modeling Dependence in High Dimensions With Factor Copulas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 139-154, January.
    4. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    5. Nguyen, Hoang & Ausín, M. Concepción & Galeano, Pedro, 2020. "Variational inference for high dimensional structured factor copulas," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    6. Krupskii, Pavel & Joe, Harry, 2015. "Structured factor copula models: Theory, inference and computation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 53-73.
    7. Benedikt Schamberger & Lutz F. Gruber & Claudia Czado, 2017. "Bayesian Inference for Latent Factor Copulas and Application to Financial Risk Forecasting," Econometrics, MDPI, vol. 5(2), pages 1-23, May.
    8. Creal, Drew D. & Tsay, Ruey S., 2015. "High dimensional dynamic stochastic copula models," Journal of Econometrics, Elsevier, vol. 189(2), pages 335-345.
    9. Bai, Jushan & Ng, Serena, 2008. "Large Dimensional Factor Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(2), pages 89-163, June.
    10. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    11. Kreuzer, Alexander & Czado, Claudia, 2021. "Bayesian inference for a single factor copula stochastic volatility model using Hamiltonian Monte Carlo," Econometrics and Statistics, Elsevier, vol. 19(C), pages 130-150.
    12. Dong Hwan Oh & Andrew J. Patton, 2013. "Simulated Method of Moments Estimation for Copula-Based Multivariate Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 689-700, June.
    13. Krupskii, Pavel & Joe, Harry, 2013. "Factor copula models for multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 85-101.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tachibana, Minoru, 2022. "Safe haven assets for international stock markets: A regime-switching factor copula approach," Research in International Business and Finance, Elsevier, vol. 60(C).
    2. Mayer, Alexander & Wied, Dominik, 2023. "Estimation and inference in factor copula models with exogenous covariates," Journal of Econometrics, Elsevier, vol. 235(2), pages 1500-1521.
    3. Manner, Hans & Stark, Florian & Wied, Dominik, 2019. "Testing for structural breaks in factor copula models," Journal of Econometrics, Elsevier, vol. 208(2), pages 324-345.
    4. Nguyen, Hoang & Ausín, M. Concepción & Galeano, Pedro, 2020. "Variational inference for high dimensional structured factor copulas," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    5. Lin Deng & Michael Stanley Smith & Worapree Maneesoonthorn, 2023. "Large Skew-t Copula Models and Asymmetric Dependence in Intraday Equity Returns," Papers 2308.05564, arXiv.org, revised Mar 2024.
    6. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
    7. Georges Bresson & Jean-Michel Etienne & Pierre Mohnen, 2011. "How important is innovation? A Bayesian factor-augmented productivity model on panel data," TEPP Working Paper 2011-06, TEPP.
    8. Dong Hwan Oh & Andrew J. Patton, 2017. "Modeling Dependence in High Dimensions With Factor Copulas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 139-154, January.
    9. Anne Opschoor & André Lucas & István Barra & Dick van Dijk, 2021. "Closed-Form Multi-Factor Copula Models With Observation-Driven Dynamic Factor Loadings," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1066-1079, October.
    10. Ergemen, Yunus Emre, 2023. "Parametric estimation of long memory in factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1483-1499.
    11. Liang Chen & Juan J. Dolado & Jesús Gonzalo, 2021. "Quantile Factor Models," Econometrica, Econometric Society, vol. 89(2), pages 875-910, March.
    12. Kreuzer, Alexander & Czado, Claudia, 2021. "Bayesian inference for a single factor copula stochastic volatility model using Hamiltonian Monte Carlo," Econometrics and Statistics, Elsevier, vol. 19(C), pages 130-150.
    13. Krupskii, Pavel & Joe, Harry, 2020. "Flexible copula models with dynamic dependence and application to financial data," Econometrics and Statistics, Elsevier, vol. 16(C), pages 148-167.
    14. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    15. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    16. Helena Chuliá & Sabuhi Khalili & Jorge M. Uribe, 2024. "Monitoring time-varying systemic risk in sovereign debt and currency markets with generative AI," IREA Working Papers 202402, University of Barcelona, Research Institute of Applied Economics, revised Feb 2024.
    17. Chen Tong & Peter Reinhard Hansen, 2023. "Characterizing Correlation Matrices that Admit a Clustered Factor Representation," Papers 2308.05895, arXiv.org.
    18. Ackerer Damien & Vatter Thibault, 2017. "Dependent defaults and losses with factor copula models," Dependence Modeling, De Gruyter, vol. 5(1), pages 375-399, December.
    19. Damien Ackerer & Thibault Vatter, 2016. "Dependent Defaults and Losses with Factor Copula Models," Papers 1610.03050, arXiv.org, revised Jan 2018.
    20. Nevrla, Matěj, 2020. "Systemic risk in European financial and energy sectors: Dynamic factor copula approach," Economic Systems, Elsevier, vol. 44(4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:10:y:2022:i:1:p:270-289:n:15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.