IDEAS home Printed from https://ideas.repec.org/a/taf/tcpoxx/v17y2017i8p1014-1030.html
   My bibliography  Save this article

Interactions between European agricultural policy and climate change: a Slovenian case study

Author

Listed:
  • Emil Erjavec
  • Tina Volk
  • Miroslav Rednak
  • Ilona Rac
  • Barbara Zagorc
  • Ben Moljk
  • Jaka Žgajnar

Abstract

This article analyses the interactions between agricultural policy measures in the EU and the factors affecting GHG emissions from agriculture on the one hand, and the adaptation of agriculture to climate change on the other. To this end, the article uses Slovenia as a case study, assessing the extent to which Slovenian agricultural policy is responding to the challenges of climate change. All agricultural policy measures related to the 2007–2013 programming period were analysed according to a new methodological approach that is based on a qualitative (expert evaluation) and a quantitative (budgetary transfers validation) assessment. A panel of experts reached consensus on the key factors through which individual measures affect climate change, in which direction and how significantly. Data on budgetary funds for each measure were used as weights to assess their relative importance. The results show that there are not many measures in (Slovenian) agricultural policy that are directly aimed at reducing GHG emissions from agriculture or at adaptation to climate change. Nevertheless, most affect climate change, and their impact is far from negligible. Current measures have both positive and negative impacts, but overall the positive impacts prevail. Measures that involve many beneficiaries and more budgetary funds had the strongest impact on aggregate assessments. In light of climate change, agricultural policy should pay more attention to measures that are aimed at raising the efficiency of animal production, as it is the principal source of GHG emissions from agriculture.Policy relevanceAgricultural policy must respond to climate challenges and climate change impact assessment must be included in the process of forming European agricultural policy. Agricultural policy measures that contribute to the reduction of emissions and adaptation, whilst acting in synergy with other environmental, economic and social goals, should be promoted. The approach used in this study combines qualitative and quantitative data, yielding an objective assessment of the climate impact of agricultural policy measures and providing policy makers with a tool for either ex ante or ex post evaluations of climate-relevant policy measures.

Suggested Citation

  • Emil Erjavec & Tina Volk & Miroslav Rednak & Ilona Rac & Barbara Zagorc & Ben Moljk & Jaka Žgajnar, 2017. "Interactions between European agricultural policy and climate change: a Slovenian case study," Climate Policy, Taylor & Francis Journals, vol. 17(8), pages 1014-1030, November.
  • Handle: RePEc:taf:tcpoxx:v:17:y:2017:i:8:p:1014-1030
    DOI: 10.1080/14693062.2016.1222259
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14693062.2016.1222259
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14693062.2016.1222259?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nelson, Gerald C. & Rosegrant, Mark W. & Koo, Jawoo & Robertson, Richard & Sulser, Timothy & Zhu, Tingju & Ringler, Claudia & Msangi, Siwa & Palazzo, Amanda & Batka, Miroslav & Magalhaes, Marilia & Va, 2009. "Climate change: Impact on agriculture and costs of adaptation," Food policy reports 21, International Food Policy Research Institute (IFPRI).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bazyli Czyżewski & Anna Matuszczak & Łukasz Kryszak & Andrzej Czyżewski, 2019. "Efficiency of the EU Environmental Policy in Struggling with Fine Particulate Matter (PM 2.5 ): How Agriculture Makes a Difference?," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    2. Jie Lv & Lu Huang & Xiaoting Li, 2022. "Does the Creation of Food Safety Demonstration Cities Promote Agricultural Development? Evidence from China," IJERPH, MDPI, vol. 19(24), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdoul G. Sam & Babatunde O. Abidoye & Sihle Mashaba, 2021. "Climate change and household welfare in sub-Saharan Africa: empirical evidence from Swaziland," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(2), pages 439-455, April.
    2. repec:fpr:ifprib:2012ghienglish is not listed on IDEAS
    3. Jeetendra Prakash Aryal & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri & Dil Bahadur Rahut & M. L. Jat, 2020. "Climate change and agriculture in South Asia: adaptation options in smallholder production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5045-5075, August.
    4. Jayatilleke S. Bandara & Yiyong Cai, 2014. "The impact of climate change on food crop productivity, food prices and food security in South Asia," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 451-465.
    5. Brown, Peter R. & Bridle, Kerry L. & Crimp, Steven J., 2016. "Assessing the capacity of Australian broadacre mixed farmers to adapt to climate change: Identifying constraints and opportunities," Agricultural Systems, Elsevier, vol. 146(C), pages 129-141.
    6. Ouraich, Ismail & Dudu, Hasan & Tyner, Wallace E. & Cakmak, Erol, 2014. "Could Free Trade Alleviate Effects of Climate Change: A Worldwide Analysis with Emphasis on Morocco and Turkey," Conference papers 332460, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    7. Nagisa Shiiba & Hide-Fumi Yokoo & Voravee Saengavut & Siraprapa Bumrungkit, 2023. "Ambiguity Aversion And Individual Adaptation To Climate Change: Evidence From A Farmer Survey In Northeastern Thailand," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-29, February.
    8. Sovacool, Benjamin K. & Bazilian, Morgan & Griffiths, Steve & Kim, Jinsoo & Foley, Aoife & Rooney, David, 2021. "Decarbonizing the food and beverages industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Claudia Ringler & Menaal Ebrahim, 2015. "Policy Nook: "Climate Change and Water: What Can Economics Tell Us?"," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 1(03), pages 1-7.
    10. Esteve, Paloma & Varela-Ortega, Consuelo & Blanco-Gutiérrez, Irene & Downing, Thomas E., 2015. "A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture," Ecological Economics, Elsevier, vol. 120(C), pages 49-58.
    11. Mauro Vigani & Manuel Gomez-Barbero & Emilio Rodríguez-Cerezo, 2015. "The determinants of wheat yields: the role of sustainable innovation, policies and risks in France and Hungary," JRC Research Reports JRC95950, Joint Research Centre.
    12. Channing Arndt & William Farmer & Kenneth Strzepek & James Thurlow, 2012. "Climate Change, Agriculture and Food Security in Tanzania," Review of Development Economics, Wiley Blackwell, vol. 16(3), pages 378-393, August.
    13. Channing Arndt & William Farmer & Kenneth Strzepek & James Thurlow, 2012. "Climate Change, Agriculture and Food Security in Tanzania," Review of Development Economics, Wiley Blackwell, vol. 16(3), pages 378-393, August.
    14. Naveen P. Singh & Bhawna Anand & S. K. Srivastava & N. R. Kumar & Shirish Sharma & S. K. Bal & K. V. Rao & M. Prabhakar, 2022. "Risk, perception and adaptation to climate change: evidence from arid region, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1015-1037, June.
    15. Leah Salm & Nicholas Nisbett & Laura Cramer & Stuart Gillespie & Philip Thornton, 2021. "How climate change interacts with inequity to affect nutrition," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    16. Jill E. Gready, 2014. "Best-fit options of crop staples for food security: productivity, nutrition and sustainability," Chapters, in: Raghbendra Jha & Raghav Gaiha & Anil B. Deolalikar (ed.), Handbook on Food, chapter 15, pages 381-421, Edward Elgar Publishing.
    17. Michael D. Jones, 2014. "Cultural Characters and Climate Change: How Heroes Shape Our Perception of Climate Science," Social Science Quarterly, Southwestern Social Science Association, vol. 95(1), pages 1-39, March.
    18. Thomas, Timothy S., 2015. "US maize data reveals adaptation to heat and water stress:," IFPRI discussion papers 1485, International Food Policy Research Institute (IFPRI).
    19. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    20. Ward, Patrick S. & Spielman, David J. & Ortega, David L. & Kumar, Neha & Minocha, Sumedha, 2015. "Demand for Complementary Financial and Technological Tools for Managing Drought Risk: Evidence from Rice Farmers in Bangladesh," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 204882, Agricultural and Applied Economics Association.
    21. Collins-Sowah, Peron A., 2018. "Theoretical conception of climate-smart agriculture," Working Papers of Agricultural Policy WP2018-02, University of Kiel, Department of Agricultural Economics, Chair of Agricultural Policy.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tcpoxx:v:17:y:2017:i:8:p:1014-1030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tcpo20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.