IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v15y2015i5p809-827.html
   My bibliography  Save this article

A practical approach to semideviation and its time scaling in a jump-diffusion process

Author

Listed:
  • R. Oeuvray
  • P. Junod

Abstract

One of the most popular risk-adjusted fund return measures in the asset management industry is the Sortino ratio. It is an alternative to the Sharpe ratio that differentiates harmful volatility from general volatility by taking into account the standard deviation of negative asset returns, a quantity called semideviation. Indeed, the semideviation is generally preferred to the standard deviation when the distribution of the returns is skewed. A common method to annualize it is to use the square-root-of-time rule, where an estimated quantile of a return distribution is scaled to a lower frequency by the square root of the time horizon. However, this relation does not generally hold for this risk measure and often gives a terrible estimation of it. The aim of this paper is to provide a practical approach to semideviation by explaining how it should be computed. We propose and justify the use of a new model, which delivers a more accurate estimation of the downside risk. It is a generalization of the Ball-Torous approximation of a jump-diffusion process, which can be applied when the volatility is constant or stochastic. In the latter case, we use Markov Chain Monte Carlo (MCMC) methods to fit our stochastic volatility model. We also derive an exact formula for the semideviation when the volatility is kept constant, explaining how it should be scaled when considering a lower frequency. For the tests, we apply our methodology to a highly skewed set of returns based on the Barclays US High Yield Index, where we compare different time scalings for the semideviation. Our work shows that the square-root-of-time rule provides a poor approximation of the semideviation, and that the simplification brought by Ball and Torous should be replaced by our new methodology, as it gives much better results.

Suggested Citation

  • R. Oeuvray & P. Junod, 2015. "A practical approach to semideviation and its time scaling in a jump-diffusion process," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 809-827, May.
  • Handle: RePEc:taf:quantf:v:15:y:2015:i:5:p:809-827
    DOI: 10.1080/14697688.2014.952241
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2014.952241
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2014.952241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mikhail Chernov & A. Ronald Gallant & Eric Ghysels & George Tauchen, 1999. "A New Class of Stochastic Volatility Models with Jumps: Theory and Estimation," CIRANO Working Papers 99s-48, CIRANO.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John M. Maheu & Thomas H. McCurdy, 2002. "Nonlinear Features of Realized FX Volatility," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 668-681, November.
    2. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    3. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    4. Kyriakos Chourdakis, 2002. "Continuous Time Regime Switching Models and Applications in Estimating Processes with Stochastic Volatility and Jumps," Working Papers 464, Queen Mary University of London, School of Economics and Finance.
    5. Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016. "A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.
    6. repec:wyi:journl:002117 is not listed on IDEAS
    7. Daal, Elton & Naka, Atsuyuki & Yu, Jung-Suk, 2007. "Volatility clustering, leverage effects, and jump dynamics in the US and emerging Asian equity markets," Journal of Banking & Finance, Elsevier, vol. 31(9), pages 2751-2769, September.
    8. Choi, Yongok & Jacewitz, Stefan & Park, Joon Y., 2016. "A reexamination of stock return predictability," Journal of Econometrics, Elsevier, vol. 192(1), pages 168-189.
    9. Carl Chiarella & Christina Nikitopoulos-Sklibosios & Erik Schlogl & Hongang Yang, 2016. "Pricing American Options under Regime Switching Using Method of Lines," Research Paper Series 368, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. Luca Benzoni & Pierre Collin-Dufresne & Robert S. Goldstein, 2005. "Can Standard Preferences Explain the Prices of out of the Money S&P 500 Put Options," NBER Working Papers 11861, National Bureau of Economic Research, Inc.
    11. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 1999. "Range-Based Estimation of Stochastic Volatility Models or Exchange Rate Dynamics are More Interesting Than You Think," Center for Financial Institutions Working Papers 00-28, Wharton School Center for Financial Institutions, University of Pennsylvania.
    12. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    13. repec:wyi:journl:002142 is not listed on IDEAS
    14. Rodríguez Nava Abigail & Francisco Venegas Martínez, 2010. "Efectos del tipo de cambio sobre el déficit público: modelos de simulación Monte Carlo," Contaduría y Administración, Accounting and Management, vol. 55(3), pages 11-40, septiembr.
    15. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    16. Rodrigue Oeuvray & Pascal Junod, 2013. "On time scaling of semivariance in a jump-diffusion process," Papers 1311.1122, arXiv.org.
    17. Kyriakos Chourdakis, 2002. "Continuous Time Regime Switching Models and Applications in Estimating Processes with Stochastic Volatility and Jumps," Working Papers 464, Queen Mary University of London, School of Economics and Finance.
    18. Uppal, Raman & Das, Sanjiv Ranjan, 2002. "Systemic Risk and International Portfolio Choice," CEPR Discussion Papers 3305, C.E.P.R. Discussion Papers.
    19. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
    20. Stefano Galluccio & Yann Le Cam, 2005. "Implied Calibration of Stochastic Volatility Jump Diffusion Models," Finance 0510028, University Library of Munich, Germany.
    21. Tyler J. VanderWeele, 2007. "The volatility effects of nontrading for stock market returns," Applied Financial Economics, Taylor & Francis Journals, vol. 17(13), pages 1037-1041.
    22. Bin Chen & Yongmiao Hong, 2013. "Characteristic Function-Based Testing for Multifactor Continuous-Time Markov Models via Nonparametri," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:15:y:2015:i:5:p:809-827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.