IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v13y2013i6p873-884.html
   My bibliography  Save this article

A multi-dimensional local average lattice method for multi-asset models

Author

Listed:
  • Kyoung-Sook Moon
  • Hongjoong Kim

Abstract

We develop a multi-dimensional local average lattice method in order to compute efficiently and accurately the price of multivariate contingent claims. The proposed method improves the accuracy of the standard lattice method by considering the local averages of option prices around each node at the final time, rather than the prices at the nodes. The average value smooths the oscillatory behavior of the lattice method, which leads to fast convergence of the option values. Numerical computations show that the proposed local average lattice method is more efficient than other lattice methods for a given level of accuracy.

Suggested Citation

  • Kyoung-Sook Moon & Hongjoong Kim, 2013. "A multi-dimensional local average lattice method for multi-asset models," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 873-884, May.
  • Handle: RePEc:taf:quantf:v:13:y:2013:i:6:p:873-884
    DOI: 10.1080/14697688.2012.744086
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2012.744086
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2012.744086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ekvall, Niklas, 1996. "A lattice approach for pricing of multivariate contingent claims," European Journal of Operational Research, Elsevier, vol. 91(2), pages 214-228, June.
    2. Min Dai, 2003. "One-state variable binomial models for European-/American-style geometric Asian options," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 288-295.
    3. Breen, Richard, 1991. "The Accelerated Binomial Option Pricing Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(2), pages 153-164, June.
    4. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    5. Steve Heston & Guofu Zhou, 2000. "On the Rate of Convergence of Discrete‐Time Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 53-75, January.
    6. Andrea Gamba & Lenos Trigeorgis, 2007. "An Improved Binomial Lattice Method for Multi-Dimensional Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 453-475.
    7. Boyle, Phelim P., 1988. "A Lattice Framework for Option Pricing with Two State Variables," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(1), pages 1-12, March.
    8. Dietmar Leisen & Matthias Reimer, 1996. "Binomial models for option valuation - examining and improving convergence," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(4), pages 319-346.
    9. Figlewski, Stephen & Gao, Bin, 1999. "The adaptive mesh model: a new approach to efficient option pricing," Journal of Financial Economics, Elsevier, vol. 53(3), pages 313-351, September.
    10. Mark Joshi, 2009. "Achieving smooth asymptotics for the prices of European options in binomial trees," Quantitative Finance, Taylor & Francis Journals, vol. 9(2), pages 171-176.
    11. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," The Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-1250.
    12. Francine Diener & MARC Diener, 2004. "Asymptotics of the price oscillations of a European call option in a tree model," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 271-293, April.
    13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    14. Bardia Kamrad & Peter Ritchken, 1991. "Multinomial Approximating Models for Options with k State Variables," Management Science, INFORMS, vol. 37(12), pages 1640-1652, December.
    15. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G. Rigatos & P. Siano, 2018. "Stabilization of Mortgage Price Dynamics Using a Boundary PDE Feedback Control Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(1), pages 37-56, March.
    2. Kyoung-Sook Moon & Yunju Jeong & Hongjoong Kim, 2016. "An Efficient Binomial Method for Pricing Asian Options," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(2), pages 151-164.
    3. Chaeyoung Lee & Jisang Lyu & Eunchae Park & Wonjin Lee & Sangkwon Kim & Darae Jeong & Junseok Kim, 2020. "Super-Fast Computation for the Three-Asset Equity-Linked Securities Using the Finite Difference Method," Mathematics, MDPI, vol. 8(3), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Gamba & Lenos Trigeorgis, 2007. "An Improved Binomial Lattice Method for Multi-Dimensional Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 453-475.
    2. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    3. Jarno Talponen & Minna Turunen, 2022. "Option pricing: a yet simpler approach," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 57-81, June.
    4. Carlos Andrés Zapata Quimbayo, 2020. "OPCIONES REALES Una guía teórico-práctica para la valoración de inversiones bajo incertidumbre mediante modelos en tiempo discreto y simulación de Monte Carlo," Books, Universidad Externado de Colombia, Facultad de Finanzas, Gobierno y Relaciones Internacionales, number 138, August.
    5. San-Lin Chung & Pai-Ta Shih, 2007. "Generalized Cox-Ross-Rubinstein Binomial Models," Management Science, INFORMS, vol. 53(3), pages 508-520, March.
    6. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    7. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    8. Dirk Sierag & Bernard Hanzon, 2018. "Pricing derivatives on multiple assets: recombining multinomial trees based on Pascal’s simplex," Annals of Operations Research, Springer, vol. 266(1), pages 101-127, July.
    9. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    10. Yuh‐Dauh Lyuu & Yu‐Quan Zhang, 2023. "Pricing multiasset time‐varying double‐barrier options with time‐dependent parameters," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(3), pages 404-434, March.
    11. Josheski Dushko & Apostolov Mico, 2020. "A Review of the Binomial and Trinomial Models for Option Pricing and their Convergence to the Black-Scholes Model Determined Option Prices," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 24(2), pages 53-85, June.
    12. Chang, Chuang-Chang & Lin, Jun-Biao, 2010. "The valuation of contingent claims using alternative numerical methods," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 20(5), pages 490-508, December.
    13. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    14. Jarno Talponen & Minna Turunen, 2017. "Option pricing: A yet simpler approach," Papers 1705.00212, arXiv.org, revised Mar 2018.
    15. Jimmy E. Hilliard, 2014. "Robust binomial lattices for univariate and multivariate applications: choosing probabilities to match local densities," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 101-110, January.
    16. Donald J. Brown & Rustam Ibragimov, 2005. "Sign Tests for Dependent Observations and Bounds for Path-Dependent Options," Cowles Foundation Discussion Papers 1518, Cowles Foundation for Research in Economics, Yale University.
    17. Pressacco, Flavio & Gaudenzi, Marcellino & Zanette, Antonino & Ziani, Laura, 2008. "New insights on testing the efficiency of methods of pricing and hedging American options," European Journal of Operational Research, Elsevier, vol. 185(1), pages 235-254, February.
    18. Kim, Young Shin & Stoyanov, Stoyan & Rachev, Svetlozar & Fabozzi, Frank J., 2019. "Enhancing binomial and trinomial equity option pricing models," Finance Research Letters, Elsevier, vol. 28(C), pages 185-190.
    19. Jérôme Detemple, 2014. "Optimal Exercise for Derivative Securities," Annual Review of Financial Economics, Annual Reviews, vol. 6(1), pages 459-487, December.
    20. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:13:y:2013:i:6:p:873-884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.