IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v13y2013i12p1915-1923.html
   My bibliography  Save this article

Measuring marginal risk contributions in credit portfolios

Author

Listed:
  • Thomas Siller

Abstract

The Fourier Transform Monte Carlo (FTMC) method, a powerful algorithm for robust computation of marginal risk contributions and capital allocations for credit portfolios in the framework of mixture models, is presented. The method outperforms results obtained from simple Monte Carlo simulations which are flawed by high variances if expected values conditional on rare events are calculated. The FTMC method exploits the conditional independence property of the underlying latent variable model and, in addition, makes use of the Fast Fourier Transform technique for risk aggregation. Marginal risk contributions for expected shortfall, value at risk and capital at risk are presented for a synthetic but realistic credit portfolio.

Suggested Citation

  • Thomas Siller, 2013. "Measuring marginal risk contributions in credit portfolios," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1915-1923, December.
  • Handle: RePEc:taf:quantf:v:13:y:2013:i:12:p:1915-1923
    DOI: 10.1080/14697688.2012.742203
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2012.742203
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2012.742203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    2. Grübel, Rudolf & Hermesmeier, Renate, 1999. "Computation of Compound Distributions I: Aliasing Errors and Exponential Tilting," ASTIN Bulletin, Cambridge University Press, vol. 29(2), pages 197-214, November.
    3. Dirk Tasche, 2009. "Capital allocation for credit portfolios with kernel estimators," Quantitative Finance, Taylor & Francis Journals, vol. 9(5), pages 581-595.
    4. Sandro Merino & Mark Nyfeler, 2004. "Applying importance sampling for estimating coherent credit risk contributions," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 199-207.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthias Fischer & Thorsten Moser & Marius Pfeuffer, 2018. "A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations," Risks, MDPI, vol. 6(4), pages 1-28, December.
    2. Takaaki Koike & Marius Hofert, 2019. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Papers 1909.11794, arXiv.org, revised May 2020.
    3. Paulusch, Joachim & Schlütter, Sebastian, 2022. "Sensitivity-implied tail-correlation matrices," Journal of Banking & Finance, Elsevier, vol. 134(C).
    4. Koike, Takaaki & Saporito, Yuri & Targino, Rodrigo, 2022. "Avoiding zero probability events when computing Value at Risk contributions," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 173-192.
    5. Ji, Liuyan & Tan, Ken Seng & Yang, Fan, 2021. "Tail dependence and heavy tailedness in extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 282-293.
    6. Targino, Rodrigo S. & Peters, Gareth W. & Shevchenko, Pavel V., 2015. "Sequential Monte Carlo Samplers for capital allocation under copula-dependent risk models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 206-226.
    7. Takaaki Koike & Marius Hofert, 2020. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Risks, MDPI, vol. 8(1), pages 1-33, January.
    8. Guoli Mo & Chunzhi Tan & Weiguo Zhang & Xuezeng Yu, 2023. "Dynamic spatiotemporal correlation coefficient based on adaptive weight," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-43, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangwu Liu, 2015. "Simulating Risk Contributions of Credit Portfolios," Operations Research, INFORMS, vol. 63(1), pages 104-121, February.
    2. Paulusch, Joachim & Schlütter, Sebastian, 2022. "Sensitivity-implied tail-correlation matrices," Journal of Banking & Finance, Elsevier, vol. 134(C).
    3. Dirk Tasche, 2009. "Capital allocation for credit portfolios with kernel estimators," Quantitative Finance, Taylor & Francis Journals, vol. 9(5), pages 581-595.
    4. Giannopoulos, Kostas & Tunaru, Radu, 2005. "Coherent risk measures under filtered historical simulation," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 979-996, April.
    5. Winter, Peter, 2007. "Managerial Risk Accounting and Control – A German perspective," MPRA Paper 8185, University Library of Munich, Germany.
    6. Juan Carlos Escanciano & Zaichao Du, 2015. "Backtesting Expected Shortfall: Accounting for Tail Risk," CAEPR Working Papers 2015-001, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    7. Dimitrios G. Konstantinides & Georgios C. Zachos, 2019. "Exhibiting Abnormal Returns Under a Risk Averse Strategy," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 551-566, June.
    8. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    9. Qifa Xu & Lu Chen & Cuixia Jiang & Yezheng Liu, 2022. "Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 407-421, April.
    10. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    11. Björn Häckel, 2010. "Risikoadjustierte Wertbeiträge zur ex ante Entscheidungsunterstützung: Ein axiomatischer Ansatz," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 21(1), pages 81-108, June.
    12. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    13. Bernardi, Mauro, 2013. "Risk measures for skew normal mixtures," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1819-1824.
    14. Y. Malevergne & D. Sornette, 2003. "VaR-Efficient Portfolios for a Class of Super- and Sub-Exponentially Decaying Assets Return Distributions," Papers physics/0301009, arXiv.org.
    15. Maria Logvaneva & Mikhail Tselishchev, 2022. "On a Stochastic Model of Diversification," Papers 2204.01284, arXiv.org.
    16. Ebnother, Silvan & Vanini, Paolo, 2007. "Credit portfolios: What defines risk horizons and risk measurement?," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3663-3679, December.
    17. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    18. Kull, Andreas, 2009. "Sharing Risk – An Economic Perspective," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 591-613, November.
    19. Csóka Péter & Pintér Miklós, 2016. "On the Impossibility of Fair Risk Allocation," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 16(1), pages 143-158, January.
    20. Gauvin, Charles & Delage, Erick & Gendreau, Michel, 2017. "Decision rule approximations for the risk averse reservoir management problem," European Journal of Operational Research, Elsevier, vol. 261(1), pages 317-336.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:13:y:2013:i:12:p:1915-1923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.