IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v12y2012i11p1695-1708.html
   My bibliography  Save this article

Truncation and acceleration of the Tian tree for the pricing of American put options

Author

Listed:
  • Ting Chen
  • Mark Joshi

Abstract

We present a new method for truncating binomial trees based on using a tolerance to control truncation errors and apply it to the Tian tree together with acceleration techniques of smoothing and Richardson extrapolation. For both the current (based on standard deviations) and the new (based on tolerance) truncation methods, we test different truncation criteria, levels and replacement values to obtain the best combination for each required level of accuracy. We also provide numerical results demonstrating that the new method can be 50% faster than previously presented methods when pricing American put options in the Black--Scholes model.

Suggested Citation

  • Ting Chen & Mark Joshi, 2012. "Truncation and acceleration of the Tian tree for the pricing of American put options," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1695-1708, November.
  • Handle: RePEc:taf:quantf:v:12:y:2012:i:11:p:1695-1708
    DOI: 10.1080/14697688.2011.617776
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2011.617776
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2011.617776?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leisen, Dietmar P. J., 1998. "Pricing the American put option: A detailed convergence analysis for binomial models," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1419-1444, August.
    2. Jiun Hong Chan & Mark Joshi & Robert Tang & Chao Yang, 2009. "Trinomial or binomial: Accelerating American put option price on trees," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(9), pages 826-839, September.
    3. Hull, John & White, Alan, 1988. "The Use of the Control Variate Technique in Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(3), pages 237-251, September.
    4. Song-Ping Zhu, 2006. "An exact and explicit solution for the valuation of American put options," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 229-242.
    5. Yisong Tian, 1993. "A modified lattice approach to option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(5), pages 563-577, August.
    6. Dietmar Leisen & Matthias Reimer, 1996. "Binomial models for option valuation - examining and improving convergence," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(4), pages 319-346.
    7. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-1250.
    8. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    9. Ju, Nengjiu, 1998. "Pricing an American Option by Approximating Its Early Exercise Boundary as a Multipiece Exponential Function," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 627-646.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qianru Shang & Brian Byrne, 2021. "American option pricing: Optimal Lattice models and multidimensional efficiency tests," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 514-535, April.
    2. Guillaume Leduc & Merima Nurkanovic Hot, 2020. "Joshi’s Split Tree for Option Pricing," Risks, MDPI, vol. 8(3), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillaume Leduc & Merima Nurkanovic Hot, 2020. "Joshi’s Split Tree for Option Pricing," Risks, MDPI, vol. 8(3), pages 1-26, August.
    2. San-Lin Chung & Pai-Ta Shih, 2007. "Generalized Cox-Ross-Rubinstein Binomial Models," Management Science, INFORMS, vol. 53(3), pages 508-520, March.
    3. Qianru Shang & Brian Byrne, 2021. "American option pricing: Optimal Lattice models and multidimensional efficiency tests," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 514-535, April.
    4. Andrea Gamba & Lenos Trigeorgis, 2007. "An Improved Binomial Lattice Method for Multi-Dimensional Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 453-475.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. San-Lin Chung & Mark Shackleton, 2005. "On the use and improvement of Hull and White's control variate technique," Applied Financial Economics, Taylor & Francis Journals, vol. 15(16), pages 1171-1179.
    7. In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
    8. Mark Joshi & Mike Staunton, 2012. "On the analytical/numerical pricing of American put options against binomial tree prices," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 17-20, December.
    9. Leisen, Dietmar P. J., 1999. "The random-time binomial model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1355-1386, September.
    10. Minqiang Li, 2010. "Analytical approximations for the critical stock prices of American options: a performance comparison," Review of Derivatives Research, Springer, vol. 13(1), pages 75-99, April.
    11. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    12. Zhongkai Liu & Tao Pang, 2016. "An efficient grid lattice algorithm for pricing American-style options," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 5(1), pages 36-55.
    13. Pier Giuseppe Giribone & Simone Ligato, 2016. "Flexible-forward pricing through Leisen–Reimer trees: Implementation and performance comparison with traditional Markov chains," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-21, June.
    14. Chockalingam, Arun & Muthuraman, Kumar, 2015. "An approximate moving boundary method for American option pricing," European Journal of Operational Research, Elsevier, vol. 240(2), pages 431-438.
    15. Mark Joshi, 2009. "Achieving smooth asymptotics for the prices of European options in binomial trees," Quantitative Finance, Taylor & Francis Journals, vol. 9(2), pages 171-176.
    16. Dasheng Ji & B. Brorsen, 2011. "A recombining lattice option pricing model that relaxes the assumption of lognormality," Review of Derivatives Research, Springer, vol. 14(3), pages 349-367, October.
    17. Jing Zhao & Hoi Ying Wong, 2012. "A closed-form solution to American options under general diffusion processes," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 725-737, July.
    18. Pressacco, Flavio & Gaudenzi, Marcellino & Zanette, Antonino & Ziani, Laura, 2008. "New insights on testing the efficiency of methods of pricing and hedging American options," European Journal of Operational Research, Elsevier, vol. 185(1), pages 235-254, February.
    19. Gambaro, Anna Maria & Kyriakou, Ioannis & Fusai, Gianluca, 2020. "General lattice methods for arithmetic Asian options," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1185-1199.
    20. Jean-Christophe Breton & Youssef El-Khatib & Jun Fan & Nicolas Privault, 2021. "A q-binomial extension of the CRR asset pricing model," Papers 2104.10163, arXiv.org, revised Feb 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:12:y:2012:i:11:p:1695-1708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.