IDEAS home Printed from https://ideas.repec.org/a/taf/oaefxx/doi10.1080-23322039.2014.929505.html
   My bibliography  Save this article

Application of integrated data mining techniques in stock market forecasting

Author

Listed:
  • Chin-Yin Huang
  • Philip K.P. Lin

Abstract

Stock market is considered too uncertain to be predictable. Many individuals have developed methodologies or models to increase the probability of making a profit in their stock investment. The overall hit rates of these methodologies and models are generally too low to be practical for real-world application. One of the major reasons is the huge fluctuation of the market. Therefore, the current research focuses in the stock forecasting area is to improve the accuracy of stock trading forecast. This paper introduces a system that addresses the particular need. The system integrates various data mining techniques and supports the decision-making for stock trades. The proposed system embeds the top-down trading theory, artificial neural network theory, technical analysis, dynamic time series theory, and Bayesian probability theory. To experimentally examine the trading return of the presented system, two examples are studied. The first uses the Taiwan Semiconductor Manufacturing Company (TSMC) data-set that covers an investment horizon of 240 trading days from 16 February 2011 to 23 January 2013. Eighty four transactions were made using the proposed approach and the investment return of the portfolio was 54% with an 80.4% hit rate during a 12-month period in which the TSMC stock price increased by 25% (from $NT 78.5 to $NT 101.5). The second example examines the stock data of Evergreen Marine Corporation, an international marine shipping company. Sixty four transactions were made and the investment return of the portfolio was 128% in 12 months. Given the remarkable investment returns in trading the example TSMC and Evergreen stocks, the proposed system demonstrates promising potentials as a viable tool for stock market forecasting.

Suggested Citation

  • Chin-Yin Huang & Philip K.P. Lin, 2014. "Application of integrated data mining techniques in stock market forecasting," Cogent Economics & Finance, Taylor & Francis Journals, vol. 2(1), pages 1-18, December.
  • Handle: RePEc:taf:oaefxx:doi:10.1080/23322039.2014.929505
    DOI: 10.1080/23322039.2014.929505
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/23322039.2014.929505
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/23322039.2014.929505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taylor, James W., 2004. "Volatility forecasting with smooth transition exponential smoothing," International Journal of Forecasting, Elsevier, vol. 20(2), pages 273-286.
    2. Horst Entorf & Anne Gross & Christian Steiner, 2012. "Business Cycle Forecasts and their Implications for High Frequency Stock Market Returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(1), pages 1-14, January.
    3. James W. Taylor, 2004. "Smooth transition exponential smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 385-404.
    4. Billah, Baki & King, Maxwell L. & Snyder, Ralph D. & Koehler, Anne B., 2006. "Exponential smoothing model selection for forecasting," International Journal of Forecasting, Elsevier, vol. 22(2), pages 239-247.
    5. Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2000. "Forecasting stock indices: a comparison of classification and level estimation models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 173-190.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
    2. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    3. Chiang, Min-Hsien & Huang, Hsin-Yi, 2011. "Stock market momentum, business conditions, and GARCH option pricing models," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 488-505, June.
    4. Roberto Ferulano, 2009. "A Mixed Historical Formula to forecast volatility," Journal of Asset Management, Palgrave Macmillan, vol. 10(2), pages 124-136, June.
    5. Muhammad Sheraz & Imran Nasir, 2021. "Information-Theoretic Measures and Modeling Stock Market Volatility: A Comparative Approach," Risks, MDPI, vol. 9(5), pages 1-20, May.
    6. Liu, Min & Taylor, James W. & Choo, Wei-Chong, 2020. "Further empirical evidence on the forecasting of volatility with smooth transition exponential smoothing," Economic Modelling, Elsevier, vol. 93(C), pages 651-659.
    7. Trapero, Juan R., 2016. "Calculation of solar irradiation prediction intervals combining volatility and kernel density estimates," Energy, Elsevier, vol. 114(C), pages 266-274.
    8. Debabrata Mukhopadhyay & Nityananda Sarkar, 2013. "Stock Returns Under Alternative Volatility and Distributional Assumptions: The Case for India," International Econometric Review (IER), Econometric Research Association, vol. 5(1), pages 1-19, April.
    9. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    10. Mircea ASANDULUI, 2012. "A Multi-Horizon Comparison Of Volatility Forecasts: An Application To Stock Options Traded At Euronext Exchange Amsterdam," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 10, pages 179-190, December.
    11. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, vol. 4(1), pages 1-24, February.
    12. Sarah Gelper & Roland Fried & Christophe Croux, 2010. "Robust forecasting with exponential and Holt-Winters smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 285-300.
    13. Prateek Sharma & Vipul _, 2015. "Forecasting stock index volatility with GARCH models: international evidence," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(4), pages 445-463, October.
    14. Асатуров К.Г. & Теплова Т.В., 2014. "Построение Коэффициентов Хеджирования Для Высоколиквидных Акций Российского Рынка На Основе Моделей Класса Garch," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 50(1), pages 37-54, январь.
    15. Chai, Jian & Zhang, Zhong-Yu & Wang, Shou-Yang & Lai, Kin Keung & Liu, John, 2014. "Aviation fuel demand development in China," Energy Economics, Elsevier, vol. 46(C), pages 224-235.
    16. George-Jason Siouris & Alex Karagrigoriou, 2017. "A Low Price Correction for Improved Volatility Estimation and Forecasting," Risks, MDPI, vol. 5(3), pages 1-14, August.
    17. Edson Vengesai & Farai Kwenda, 2018. "Cash Flow Volatility and Firm Investment Behaviour: Evidence from African Listed Firms," Journal of Economics and Behavioral Studies, AMH International, vol. 10(6), pages 129-149.
    18. Leandro Maciel, 2012. "A Hybrid Fuzzy GJR-GARCH Modeling Approach for Stock Market Volatility Forecasting," Brazilian Review of Finance, Brazilian Society of Finance, vol. 10(3), pages 337-367.
    19. Liu, Hung-Chun & Chiang, Shu-Mei & Cheng, Nick Ying-Pin, 2012. "Forecasting the volatility of S&P depositary receipts using GARCH-type models under intraday range-based and return-based proxy measures," International Review of Economics & Finance, Elsevier, vol. 22(1), pages 78-91.
    20. Imlak Shaikh, 2022. "Impact of COVID-19 pandemic on the energy markets," Economic Change and Restructuring, Springer, vol. 55(1), pages 433-484, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:oaefxx:doi:10.1080/23322039.2014.929505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/OAEF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.