IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v37y2010i6p1027-1041.html
   My bibliography  Save this article

Space-time correlation analysis: a comparative study

Author

Listed:
  • Sandra De Iaco

Abstract

Space-time correlation modelling is one of the crucial steps of traditional structural analysis, since space-time models are used for prediction purposes. A comparative study among some classes of space-time covariance functions is proposed. The relevance of choosing a suitable model by taking into account the characteristic behaviour of the models is proved by using a space-time data set of ozone daily averages and the flexibility of the product-sum model is also highlighted through simulated data sets.

Suggested Citation

  • Sandra De Iaco, 2010. "Space-time correlation analysis: a comparative study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(6), pages 1027-1041.
  • Handle: RePEc:taf:japsta:v:37:y:2010:i:6:p:1027-1041
    DOI: 10.1080/02664760903019422
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760903019422
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760903019422?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Iaco, S. & Myers, D. E. & Posa, D., 2002. "Space-time variograms and a functional form for total air pollution measurements," Computational Statistics & Data Analysis, Elsevier, vol. 41(2), pages 311-328, December.
    2. Cesare, L. De & Myers, D. E. & Posa, D., 2001. "Estimating and modeling space-time correlation structures," Statistics & Probability Letters, Elsevier, vol. 51(1), pages 9-14, January.
    3. Iaco, S. De & Myers, D. E. & Posa, D., 2001. "Space-time analysis using a general product-sum model," Statistics & Probability Letters, Elsevier, vol. 52(1), pages 21-28, March.
    4. Ma, Chunsheng, 2003. "Spatio-temporal stationary covariance models," Journal of Multivariate Analysis, Elsevier, vol. 86(1), pages 97-107, July.
    5. De Iaco, S. & Palma, M. & Posa, D., 2005. "Modeling and prediction of multivariate space-time random fields," Computational Statistics & Data Analysis, Elsevier, vol. 48(3), pages 525-547, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Firoozeh Rivaz & Mohsen Mohammadzadeh & Majid Jafari Khaledi, 2011. "Spatio-temporal modeling and prediction of CO concentrations in Tehran city," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 1995-2007, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandra De Iaco, 2011. "A new space--time multivariate approach for environmental data analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2471-2483, January.
    2. Montero, José-María, 2018. "Geostatistics: Unde venis et quo vadis? /Geoestadística:¿De dónde vienes y a dónde vas?," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 36, pages 81-106, Enero.
    3. Bardia Bayat & Mohsen Nasseri & Banafsheh Zahraie, 2015. "Identification of long-term annual pattern of meteorological drought based on spatiotemporal methods: evaluation of different geostatistical approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 515-541, March.
    4. Alexandre Rodrigues & Peter J. Diggle, 2010. "A Class of Convolution‐Based Models for Spatio‐Temporal Processes with Non‐Separable Covariance Structure," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 553-567, December.
    5. José-María Montero & Gema Fernández-Avilés & Tiziana Laureti, 2021. "A Local Spatial STIRPAT Model for Outdoor NO x Concentrations in the Community of Madrid, Spain," Mathematics, MDPI, vol. 9(6), pages 1-33, March.
    6. Firoozeh Rivaz & Mohsen Mohammadzadeh & Majid Jafari Khaledi, 2011. "Spatio-temporal modeling and prediction of CO concentrations in Tehran city," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 1995-2007, November.
    7. Liu, Jinfu & Ren, Guorui & Wan, Jie & Guo, Yufeng & Yu, Daren, 2016. "Variogram time-series analysis of wind speed," Renewable Energy, Elsevier, vol. 99(C), pages 483-491.
    8. P. Gregori & E. Porcu & J. Mateu & Z. Sasvári, 2008. "On potentially negative space time covariances obtained as sum of products of marginal ones," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 865-882, December.
    9. Porcu, E. & Mateu, J. & Zini, A. & Pini, R., 2007. "Modelling spatio-temporal data: A new variogram and covariance structure proposal," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 83-89, January.
    10. Bruno Scarpa, 2005. "Non parametric space-time modeling of SO2 in presence of many missing data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 14(1), pages 67-82, February.
    11. Mehdi Omidi & Mohsen Mohammadzadeh, 2016. "A new method to build spatio-temporal covariance functions: analysis of ozone data," Statistical Papers, Springer, vol. 57(3), pages 689-703, September.
    12. Rui Jiang & Chunxue Liu & Xiaowei Liu & Shuai Zhang, 2022. "Space–Time Effect of Green Total Factor Productivity in Mineral Resources Industry in China: Based on Space–Time Semivariogram and SPVAR Model," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    13. S. De Iaco & M. Palma & D. Posa, 2013. "Prediction of particle pollution through spatio-temporal multivariate geostatistical analysis: spatial special issue," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 133-150, April.
    14. Harrison Quick & Sudipto Banerjee & Bradley P. Carlin, 2015. "Bayesian modeling and analysis for gradients in spatiotemporal processes," Biometrics, The International Biometric Society, vol. 71(3), pages 575-584, September.
    15. Ma, Chunsheng, 2004. "Spatial autoregression and related spatio-temporal models," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 152-162, January.
    16. Villez, Kris & Del Giudice, Dario & Neumann, Marc B. & Rieckermann, Jörg, 2020. "Accounting for erroneous model structures in biokinetic process models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    17. Hongxia Wang & Jinde Wang & Bo Huang, 2012. "Prediction for spatio-temporal models with autoregression in errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 217-244.
    18. Ali M. Mosammam & Jorge Mateu, 2018. "A penalized likelihood method for nonseparable space–time generalized additive models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(3), pages 333-357, July.
    19. Robinson, P.M. & Vidal Sanz, J., 2006. "Modified Whittle estimation of multilateral models on a lattice," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1090-1120, May.
    20. De Iaco, S. & Palma, M. & Posa, D., 2005. "Modeling and prediction of multivariate space-time random fields," Computational Statistics & Data Analysis, Elsevier, vol. 48(3), pages 525-547, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:37:y:2010:i:6:p:1027-1041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.