IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i8d10.1007_s11269-021-02843-1.html
   My bibliography  Save this article

Performance Assessment of a Water Delivery Canal to Improve Agricultural Water Distribution

Author

Listed:
  • Seyed Mehdi Seyed Hoshiyar

    (University of Guilan)

  • Nader Pirmoradian

    (University of Guilan)

  • Afshin Ashrafzadeh

    (University of Guilan)

  • Atefeh Parvaresh Rizi

    (University of Tehran)

Abstract

The performance of an irrigation water delivery canal located in northern Iran, which supplies water to 5,514 ha of paddy fields through ten secondary canals, was investigated. Throughout the rice growing season in the region, two performance measures, the measure of adequacy (PA) and the measure of equity (PE), were calculated for the system. It was observed that the canal, in its current physical and operational condition, is unable to distribute available water among all upstream and downstream users adequately. While 46.7 % of the total area is experiencing significant water scarcity, the amount of water received by 51.4 % of the area is approximately three times more than required. To improve the performance of the canal, structural and non-structural modifications were proposed and assessed using the SOBEK hydrodynamic model. The results showed that implementing the proposed modifications would decrease the measure of equity by 71.7 %, meaning that the overall performance of the canal could be reasonably improved.

Suggested Citation

  • Seyed Mehdi Seyed Hoshiyar & Nader Pirmoradian & Afshin Ashrafzadeh & Atefeh Parvaresh Rizi, 2021. "Performance Assessment of a Water Delivery Canal to Improve Agricultural Water Distribution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2487-2501, June.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:8:d:10.1007_s11269-021-02843-1
    DOI: 10.1007/s11269-021-02843-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02843-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02843-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghumman, A.R. & Khan, Z. & Turral, H., 2009. "Study of feasibility of night-closure of irrigation canals for water saving," Agricultural Water Management, Elsevier, vol. 96(3), pages 457-464, March.
    2. Vandersypen, Klaartje & Bengaly, Kongotigui & Keita, Abdoulaye C.T. & Sidibe, Souleymane & Raes, Dirk & Jamin, Jean-Yves, 2006. "Irrigation performance at tertiary level in the rice schemes of the Office du Niger (Mali): Adequate water delivery through over-supply," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 144-152, May.
    3. Mohammad Shahrokhnia & Mahmood Javan, 2007. "Influence of roughness changes on offtaking discharge in irrigation canals," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 635-647, March.
    4. Javaid Tariq & Muhammad Latif, 2010. "Improving Operational Performance of Farmers Managed Distributary Canal using SIC Hydraulic Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 3085-3099, September.
    5. Kumar, P. & Mishra, A. & Raghuwanshi, N. S. & Singh, R., 2002. "Application of unsteady flow hydraulic-model to a large and complex irrigation system," Agricultural Water Management, Elsevier, vol. 54(1), pages 49-66, March.
    6. Kaghazchi, Afsaneh & Hashemy Shahdany, S. Mehdy & Roozbahani, Abbas, 2021. "Simulation and evaluation of agricultural water distribution and delivery systems with a Hybrid Bayesian network model," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Zohreh Sherafatpour & Abbas Roozbahani & Yousef Hasani, 2019. "Agricultural Water Allocation by Integration of Hydro-Economic Modeling with Bayesian Networks and Random Forest Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2277-2299, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lang, Dengxiao & Ertsen, Maurits W., 2023. "Modelling farmland dynamics in response to farmer decisions using an advanced irrigation-related agent-based model," Ecological Modelling, Elsevier, vol. 486(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaghazchi, Afsaneh & Hashemy Shahdany, S. Mehdy & Roozbahani, Abbas, 2021. "Simulation and evaluation of agricultural water distribution and delivery systems with a Hybrid Bayesian network model," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Javaid Tariq & Muhammad Latif, 2010. "Improving Operational Performance of Farmers Managed Distributary Canal using SIC Hydraulic Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 3085-3099, September.
    3. Javad Shafiee Neyestanak & Abbas Roozbahani, 2021. "Comprehensive Risk Assessment of Urban Wastewater Reuse in Water Supply Alternatives Using Hybrid Bayesian Network Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 5049-5072, November.
    4. A. Ghumman & R. Khan & Q. Khan & Z. Khan, 2012. "Modeling for Various Design Options of a Canal System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2383-2395, June.
    5. Atiyeh Bozorgi & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany & Rouzbeh Abbassi, 2021. "Development of Multi-Hazard Risk Assessment Model for Agricultural Water Supply and Distribution Systems Using Bayesian Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3139-3159, August.
    6. Fatemeh Bayat & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2022. "Performance Evaluation of Agricultural Surface Water Distribution Systems Based on Water-food-energy Nexus and Using AHP-Entropy-WASPAS Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4697-4720, September.
    7. Aditi Bhadra & Arnab Bandyopadhyay & Rajendra Singh & Narendra Raghuwanshi, 2010. "An Alternative Rotational Delivery Schedule for Improved Performance of Reservoir-based Canal Irrigation System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3679-3700, October.
    8. Kamrani, Kazem & Roozbahani, Abbas & Hashemy Shahdany, Seied Mehdy, 2020. "Using Bayesian networks to evaluate how agricultural water distribution systems handle the water-food-energy nexus," Agricultural Water Management, Elsevier, vol. 239(C).
    9. Yin, Juan & Deng, Zhen & Ines, Amor V.M. & Wu, Junbin & Rasu, Eeswaran, 2020. "Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)," Agricultural Water Management, Elsevier, vol. 242(C).
    10. Vandersypen, K. & Keita, A.C.T. & Coulibaly, B. & Raes, D. & Jamin, J.-Y., 2007. "Drainage problems in the rice schemes of the Office du Niger (Mali) in relation to water management," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 153-160, April.
    11. Kazbekov, Jusipbek & Abdullaev, Iskandar & Manthrithilake, Herath & Qureshi, Asad & Jumaboev, Kakhramon, 2009. "Evaluating planning and delivery performance of Water User Associations (WUAs) in Osh Province, Kyrgyzstan," Agricultural Water Management, Elsevier, vol. 96(8), pages 1259-1267, August.
    12. Sina Jahanshahi & Reza Kerachian & Omid Emamjomehzadeh, 2023. "A Leader-Follower Framework for Sustainable Water Pricing and Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1257-1274, February.
    13. Habibeh Sharifi & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2021. "Evaluating the Performance of Agricultural Water Distribution Systems Using FIS, ANN and ANFIS Intelligent Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1797-1816, April.
    14. Eamen, Leila & Brouwer, Roy & Razavi, Saman, 2020. "The economic impacts of water supply restrictions due to climate and policy change: A transboundary river basin supply-side input-output analysis," Ecological Economics, Elsevier, vol. 172(C).
    15. George, Biju A. & Raghuwanshi, N. S. & Singh, R., 2004. "Development and testing of a GIS integrated irrigation scheduling model," Agricultural Water Management, Elsevier, vol. 66(3), pages 221-237, May.
    16. Jolfan, Mohsen Hosseini & Hashemy Shahdany, S. Mehdy & Javadi, Saman & Milan, Sami Ghordoyee & Neshat, Aminreza & Berndtsson, Ronny & Tork, Hamed, 2023. "Modernization in agricultural water distribution system for aquifer storage and recovery – A case study," Agricultural Water Management, Elsevier, vol. 282(C).
    17. Afsaneh Kaghazchi & Seied Mehdy Hashemy Shahdany & Alireza Firoozfar, 2022. "Prioritization of agricultural water distribution operating systems based on the sustainable development indicators," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 23-40, February.
    18. Mehrdad Jeihouni & Ara Toomanian & Ali Mansourian, 2020. "Decision Tree-Based Data Mining and Rule Induction for Identifying High Quality Groundwater Zones to Water Supply Management: a Novel Hybrid Use of Data Mining and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 139-154, January.
    19. Lijuan Zhang & Jinxia Wang & Guangsheng Zhang & Qiuqiong Huang, 2020. "Whether climatic factors influence the frequency of punctual on-demand deliveries of groundwater for irrigation? Empirical study in the North China Plain," Climatic Change, Springer, vol. 159(2), pages 269-287, March.
    20. Hassan, Wasim & Manzoor, Talha & Muhammad, Abubakr, 2023. "Improving equity in demand-driven irrigation systems through a rights-preserving water allocation mechanism," Agricultural Water Management, Elsevier, vol. 287(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:8:d:10.1007_s11269-021-02843-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.