IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i8d10.1007_s11269-019-02241-8.html
   My bibliography  Save this article

Integrated Hydro-Economic Modeling for Sustainable Water Resources Management in Data-Scarce Areas: The Case of Lake Karla Watershed in Greece

Author

Listed:
  • A. Alamanos

    (University of Thessaly)

  • D. Latinopoulos

    (Aristotle University of Thessaloniki)

  • G. Papaioannou

    (Hellenic Centre for Marine Research)

  • N. Mylopoulos

    (University of Thessaly)

Abstract

Hydro-economic models can serve as valuable tools to improve the understanding of system details, as well as to support decision-making and water resources management. However, hydro-economic models are not practically implemented as intended and are mainly used in academic settings due to their complexity and data requirements. This study presents a holistic hydro-economic framework for sustainable water resources management, in a simple and understandable way for policy-makers. It is examined under various management, climate and pricing scenarios. The proposed framework is based on: (a) the modeling of water balance and (b) the use of various hydro-economic outputs (e.g., irrigation water value, farmers’ utility, efficiency indexes, direct costs, etc.). The proposed methodology can be applied to data-scarce areas, such as the Lake Karla watershed, Greece. Lake Karla watershed is a typical rural Mediterranean area. The results are encouraging on hydro-economic modeling with limited data, indicating that the establishment of a new management approach could be very beneficial in terms of water use efficiency. Hence, this research can provide an appropriate and suitable approach for facilitating water management in agricultural areas and for implementing the European Framework Directive 2000/60/EC.

Suggested Citation

  • A. Alamanos & D. Latinopoulos & G. Papaioannou & N. Mylopoulos, 2019. "Integrated Hydro-Economic Modeling for Sustainable Water Resources Management in Data-Scarce Areas: The Case of Lake Karla Watershed in Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2775-2790, June.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:8:d:10.1007_s11269-019-02241-8
    DOI: 10.1007/s11269-019-02241-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02241-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02241-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhenji Zhang & Runtong Zhang & Juliang Zhang (ed.), 2013. "Liss 2012," Springer Books, Springer, edition 127, number 978-3-642-32054-5, September.
    2. Daniela D’Agostino & Alessandra Scardigno & Nicola Lamaddalena & Daniel Chami, 2014. "Sensitivity Analysis of Coupled Hydro-Economic Models: Quantifying Climate Change Uncertainty for Decision-Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4303-4318, September.
    3. Hellegers, Petra J.G.J. & Perry, Christopher J., 2004. "Water As An Economic Good In Irrigated Agriculture: Theory And Practice," Report Series 29109, Wageningen University and Research Center, Agricultural Economics Research Institute.
    4. Esteve, Paloma & Varela-Ortega, Consuelo & Blanco-Gutiérrez, Irene & Downing, Thomas E., 2015. "A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture," Ecological Economics, Elsevier, vol. 120(C), pages 49-58.
    5. Klaiber, H. Allen & Smith, V. Kerry & Kaminsky, Michael & Strong, Aaron, 2010. "Estimating the Price Elasticity of Demand for Water with Quasi Experimental Methods," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 61039, Agricultural and Applied Economics Association.
    6. Brouwer, Roy & Hofkes, Marjan, 2008. "Integrated hydro-economic modelling: Approaches, key issues and future research directions," Ecological Economics, Elsevier, vol. 66(1), pages 16-22, May.
    7. Oscar R. Burt, 1966. "Economic Control of Groundwater Reserves," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 48(3_Part_I), pages 632-647.
    8. P. Sidiropoulos & N. Mylopoulos & A. Loukas, 2013. "Optimal Management of an Overexploited Aquifer under Climate Change: The Lake Karla Case," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(6), pages 1635-1649, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leandra Merz & Di Yang & Vanessa Hull, 2020. "A Metacoupling Framework for Exploring Transboundary Watershed Management," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    2. Phoebe Koundouri & Angelos Alamanos & Jeffrey D Sachs, 2024. "Innovating for Sustainability: The Global Climate Hub," DEOS Working Papers 2403, Athens University of Economics and Business.
    3. Mike Spiliotis & Dionissis Latinopoulos & Lampros Vasiliades & Kyriakos Rafailidis & Eleni Koutsokera & Ifigenia Kagalou, 2022. "Flexible Goal Programming for Supporting Lake Karla’s (Greece) Sustainable Operation," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
    4. Bello, Al-Amin Danladi & Haniffah, Mohd Ridza Mohd, 2021. "Modelling the effects of urbanization on nutrients pollution for prospective management of a tropical watershed: A case study of Skudai River watershed," Ecological Modelling, Elsevier, vol. 459(C).
    5. Jiayu Peng & Binghui Zheng & Zhaosheng Chu & Xing Wang, 2020. "Attaining Sustainable Water Resource Utilization in Lake Basins Using Progressive Operational Scenario Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 887-904, February.
    6. Shahin Zandmoghaddam & Ali Nazemi & Elmira Hassanzadeh & Shadi Hatami, 2019. "Representing Local Dynamics of Water Resource Systems through a Data-Driven Emulation Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3579-3594, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faye, Amy & Msangi, Siwa, 2018. "Rainfall variability and groundwater availability for irrigation in Sub-Saharan Africa: evidence from the Niayes region of Senegal," MPRA Paper 92388, University Library of Munich, Germany.
    2. Francisco J. Fernández & Roberto D. Ponce & Maria Blanco & Diego Rivera & Felipe Vásquez, 2016. "Water Variability and the Economic Impacts on Small-Scale Farmers. A Farm Risk-Based Integrated Modelling Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1357-1373, March.
    3. Esteve, Paloma & Varela-Ortega, Consuelo & Blanco-Gutiérrez, Irene & Downing, Thomas E., 2015. "A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture," Ecological Economics, Elsevier, vol. 120(C), pages 49-58.
    4. Amine Chekireb & Julio Goncalves & Hubert Stahn & Agnes Tomini, 2021. "Private exploitation of the North-Western Sahara Aquifer System," Working Papers halshs-03457972, HAL.
    5. Amjath-Babu, T.S. & Sharma, Bikash & Brouwer, Roy & Rasul, Golam & Wahid, Shahriar M. & Neupane, Nilhari & Bhattarai, Utsav & Sieber, Stefan, 2019. "Integrated modelling of the impacts of hydropower projects on the water-food-energy nexus in a transboundary Himalayan river basin," Applied Energy, Elsevier, vol. 239(C), pages 494-503.
    6. P. Sidiropoulos & N. Mylopoulos & A. Loukas, 2015. "Stochastic Simulation and Management of an Over-Exploited Aquifer Using an Integrated Modeling System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 929-943, February.
    7. A. Alamanos & D. Latinopoulos & A. Loukas & N. Mylopoulos, 2020. "Comparing Two Hydro-Economic Approaches for Multi-Objective Agricultural Water Resources Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(14), pages 4511-4526, November.
    8. Eamen, Leila & Brouwer, Roy & Razavi, Saman, 2020. "The economic impacts of water supply restrictions due to climate and policy change: A transboundary river basin supply-side input-output analysis," Ecological Economics, Elsevier, vol. 172(C).
    9. Chenglong Zhang & Qiong Yue & Ping Guo, 2019. "A Nonlinear Inexact Two-Stage Management Model for Agricultural Water Allocation under Uncertainty Based on the Heihe River Water Diversion Plan," IJERPH, MDPI, vol. 16(11), pages 1-18, May.
    10. Roberto D. Ponce Oliva & Esteban Arias Montevechio & Francisco Fernández Jorquera & Felipe Vásquez-Lavin & Alejandra Stehr, 2021. "Water Use and Climate Stressors in a Multiuser River Basin Setting: Who Benefits from Adaptation?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 897-915, February.
    11. J. Tzabiras & L. Vasiliades & P. Sidiropoulos & A. Loukas & N. Mylopoulos, 2016. "Evaluation of Water Resources Management Strategies to Overturn Climate Change Impacts on Lake Karla Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5819-5844, December.
    12. Abbas Mirzaei & Mansour Zibaei, 2021. "Water Conflict Management between Agriculture and Wetland under Climate Change: Application of Economic-Hydrological-Behavioral Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 1-21, January.
    13. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    14. Ali Sardar Shahraki & Javad Shahraki & Seyed Arman Hashemi Monfared, 2021. "An integrated model for economic assessment of environmental scenarios for dust stabilization and sustainable flora–fauna ecosystem in international Hamoun wetland," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 947-967, January.
    15. Pamela Katic, 2015. "Groundwater Spatial Dynamics and Endogenous Well Location," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 181-196, January.
    16. Molle, Francois & Berkoff, Jeremy, 2007. "Water pricing in irrigation: the lifetime of an idea," Book Chapters,, International Water Management Institute.
    17. Jorge A. Garcia & Angelos Alamanos, 2022. "Integrated modelling approaches for sustainable agri-economic growth and environmental improvement: Examples from Canada, Greece, and Ireland," Papers 2208.09087, arXiv.org.
    18. Lowe, Benjamin H. & Oglethorpe, David R. & Choudhary, Sonal, 2020. "Comparing the economic value of virtual water with volumetric and stress-weighted approaches: A case for the tea supply chain," Ecological Economics, Elsevier, vol. 172(C).
    19. Wada, Christopher A. & Pongkijvorasin, Sittidaj & Roumasset, James A. & Burnett, Kimberly M., 2023. "Solving Optimal Groundwater Problems with Excel," Applied Economics Teaching Resources (AETR), Agricultural and Applied Economics Association, vol. 5(2), May.
    20. Cem P. Cetinkaya & Mert Can Gunacti, 2018. "Multi-Criteria Analysis of Water Allocation Scenarios in a Water Scarce Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2867-2884, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:8:d:10.1007_s11269-019-02241-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.