IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i8p2195-2212.html
   My bibliography  Save this article

Trivariate Frequency Analyses of Peak Discharge, Hydrograph Volume and Suspended Sediment Concentration Data Using Copulas

Author

Listed:
  • Nejc Bezak
  • Matjaž Mikoš
  • Mojca Šraj

Abstract

Copula functions are often used for multivariate frequency analyses, but discharge and suspended sediment concentrations have not yet been modelled together with the use of 3-dimensional copula functions. One hydrological station from Slovenia and five stations from USA with watershed areas from 920 km 2 to 24,996 km 2 were used for trivariate frequency analyses of peak discharges, hydrograph volumes and suspended sediment concentrations. Different parametric marginal distributions were applied and parameters were estimated with the method of L-moments. Maximum pseudo-likelihood method was used for copula parameters estimation. With the use of statistical and graphical tests we selected the most appropriate copula model. Symmetric and asymmetric versions of Archimedean copulas were applied according to the dependence characteristics of the individual stations. We selected Gumbel-Hougaard copula as the most appropriate model for all discussed stations. Primary joint return periods OR and secondary Kendall’s return periods were calculated and comparison between selected copula functions was made. We can conclude that copula functions are useful mathematical tool, which can also be used for modelling variables that are presented in this paper. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Nejc Bezak & Matjaž Mikoš & Mojca Šraj, 2014. "Trivariate Frequency Analyses of Peak Discharge, Hydrograph Volume and Suspended Sediment Concentration Data Using Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2195-2212, June.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:8:p:2195-2212
    DOI: 10.1007/s11269-014-0606-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0606-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0606-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    2. Fisher N. I. & Switzer P., 2001. "Graphical Assessment of Dependence: Is a Picture Worth 100 Tests?," The American Statistician, American Statistical Association, vol. 55, pages 233-239, August.
    3. Genest C. & Boies J-C., 2003. "Detecting Dependence With Kendall Plots," The American Statistician, American Statistical Association, vol. 57, pages 275-284, November.
    4. M. Reddy & Poulomi Ganguli, 2012. "Bivariate Flood Frequency Analysis of Upper Godavari River Flows Using Archimedean Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 3995-4018, November.
    5. Fadhilah Yusof & Foo Hui-Mean & Jamaludin Suhaila & Zulkifli Yusof, 2013. "Characterisation of Drought Properties with Bivariate Copula Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4183-4207, September.
    6. Poulomi Ganguli & M. Reddy, 2012. "Risk Assessment of Droughts in Gujarat Using Bivariate Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3301-3327, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rakesh Kumar & Narendra Goel & Chandranath Chatterjee & Purna Nayak, 2015. "Regional Flood Frequency Analysis using Soft Computing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1965-1978, April.
    2. Ziqiang Xing & Denghua Yan & Cheng Zhang & Gang Wang & Dongdong Zhang, 2015. "Spatial Characterization and Bivariate Frequency Analysis of Precipitation and Runoff in the Upper Huai River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3291-3304, July.
    3. Roberto Pizarro & Pablo García-Chevesich & Ben Ingram & Claudia Sangüesa & Juan Pino & Alfredo Ibáñez & Romina Mendoza & Carlos Vallejos & Felipe Pérez & Juan Pablo Flores & Mauricio Vera & Francisco , 2023. "Establishment of Monterrey Pine ( Pinus radiata ) Plantations and Their Effects on Seasonal Sediment Yield in Central Chile," Sustainability, MDPI, vol. 15(7), pages 1-12, March.
    4. S. Baidya & Ajay Singh & Sudhindra N. Panda, 2020. "Flood frequency analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(3), pages 1137-1158, February.
    5. Jiabo Yin & Shenglian Guo & Zhangjun Liu & Guang Yang & Yixuan Zhong & Dedi Liu, 2018. "Uncertainty Analysis of Bivariate Design Flood Estimation and its Impacts on Reservoir Routing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1795-1809, March.
    6. Sanat Nalini Sahoo & P. Sreeja, 2016. "Relationship between peak rainfall intensity (PRI) and maximum flood depth (MFD) in an urban catchment of Northeast India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1527-1544, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziqiang Xing & Denghua Yan & Cheng Zhang & Gang Wang & Dongdong Zhang, 2015. "Spatial Characterization and Bivariate Frequency Analysis of Precipitation and Runoff in the Upper Huai River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3291-3304, July.
    2. L. Vergni & F. Todisco & F. Mannocchi, 2015. "Analysis of agricultural drought characteristics through a two-dimensional copula," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2819-2835, June.
    3. Ummul Abdul Rauf & Panlop Zeephongsekul, 2014. "Analysis of Rainfall Severity and Duration in Victoria, Australia using Non-parametric Copulas and Marginal Distributions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4835-4856, October.
    4. Milan Cisty & Anna Becova & Lubomir Celar, 2016. "Analysis of Irrigation Needs Using an Approach Based on a Bivariate Copula Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 167-182, January.
    5. Vergni, L. & Todisco, F. & Di Lena, B. & Mannocchi, F., 2020. "Bivariate analysis of drought duration and severity for irrigation planning," Agricultural Water Management, Elsevier, vol. 229(C).
    6. Fatih Tosunoglu & Ibrahim Can, 2016. "Application of copulas for regional bivariate frequency analysis of meteorological droughts in Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1457-1477, July.
    7. Qiang Zhang & Tianyao Qi & Vijay Singh & Yongqin Chen & Mingzhong Xiao, 2015. "Regional Frequency Analysis of Droughts in China: A Multivariate Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1767-1787, April.
    8. Rina Wu & Jiquan Zhang & Yuhai Bao & Enliang Guo, 2019. "Run Theory and Copula-Based Drought Risk Analysis for Songnen Grassland in Northeastern China," Sustainability, MDPI, vol. 11(21), pages 1-17, October.
    9. Nguyen, Cuong & Ishaq Bhatti, M. & Henry, Darren, 2017. "Are Vietnam and Chinese stock markets out of the US contagion effect in extreme events?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 480(C), pages 10-21.
    10. Dayang Wang & Dagang Wang & Chongxun Mo & Yi Du, 2021. "Risk variation of reservoir regulation during flood season based on bivariate statistical approach under climate change: a case study in the Chengbihe reservoir, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1585-1608, September.
    11. Dai, Meng & Huang, Shengzhi & Huang, Qiang & Leng, Guoyong & Guo, Yi & Wang, Lu & Fang, Wei & Li, Pei & Zheng, Xudong, 2020. "Assessing agricultural drought risk and its dynamic evolution characteristics," Agricultural Water Management, Elsevier, vol. 231(C).
    12. Kumar Amrit & Rajendra P. Pandey & Surendra K. Mishra, 2018. "Characteristics of meteorological droughts in northwestern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 561-582, November.
    13. Nurulkamal Masseran, 2021. "Modeling the Characteristics of Unhealthy Air Pollution Events: A Copula Approach," IJERPH, MDPI, vol. 18(16), pages 1-18, August.
    14. Shahid Latif & Slobodan P. Simonovic, 2023. "Trivariate Probabilistic Assessments of the Compound Flooding Events Using the 3-D Fully Nested Archimedean (FNA) Copula in the Semiparametric Distribution Setting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1641-1693, March.
    15. Nguyen, Cuong C. & Bhatti, M. Ishaq, 2012. "Copula model dependency between oil prices and stock markets: Evidence from China and Vietnam," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(4), pages 758-773.
    16. George Tsakiris & Nikos Kordalis & Dimitris Tigkas & Vasileios Tsakiris & Harris Vangelis, 2016. "Analysing Drought Severity and Areal Extent by 2D Archimedean Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5723-5735, December.
    17. Ge, Yan & Cai, Ximing & Zhu, Tingju & Ringler, Claudia, 2016. "Drought frequency change: An assessment in northern India plains," Agricultural Water Management, Elsevier, vol. 176(C), pages 111-121.
    18. Ehouman, Yao Axel, 2021. "Dependence structure between oil price volatility and sovereign credit risk of oil exporters: Evidence using a copula approach," International Economics, Elsevier, vol. 168(C), pages 76-97.
    19. Yao Axel Ehouman, 2020. "Dependence structure between oil price volatility and sovereign credit risk of oil exporters: Evidence using a Copula Approach," EconomiX Working Papers 2020-31, University of Paris Nanterre, EconomiX.
    20. Jie Huang & Haiming Zhou & Nader Ebrahimi, 2022. "Bayesian Bivariate Cure Rate Models Using Copula Functions," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 11(3), pages 1-9, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:8:p:2195-2212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.