IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v26y2012i13p3961-3976.html
   My bibliography  Save this article

Water Resources Allocation Using a Cooperative Game with Fuzzy Payoffs and Fuzzy Coalitions

Author

Listed:
  • Armaghan Abed-Elmdoust
  • Reza Kerachian

Abstract

In this paper, two fuzzy cooperative games are utilized for modeling equitable and efficient water allocation among water users in both inter-basin and intra-basin water allocation problems. The proposed all-inclusive water allocation approach consists of three main steps, following Sadegh et al. (Water Resour Manage 24(12):2991–2310, 2010 ). In the first step, an initial water allocation is carried out using an optimization model taking into account an equity criterion. In the second step, the water users form crisp coalitions with fuzzy characteristic functions to increase the total net benefit of the system and also their own benefits. In the methodology used in this step, the water users do not need to have exact information about their payoffs and they can evaluate their payoffs as fuzzy numbers. In the second step, based on the Hukuhara difference of fuzzy numbers, optimum water allocation strategies are determined using a game with fuzzy characteristic function. In the third step, we applied another methodology which considers a class of fuzzy games with fuzzy characteristic functions and also fuzzy coalitions for water allocation. The methodology of this step is on the basis of the Hukuhara difference and the Choquet integral. The usefulness of the mentioned methodologies is studied by applying them to three defined real life scenarios in a case study of water allocation in Iran. The results showed that the proposed methodologies are professionally appropriate to real-world uncertain problems of equitable and economic inter-basin and intra-basin water resources allocations. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Armaghan Abed-Elmdoust & Reza Kerachian, 2012. "Water Resources Allocation Using a Cooperative Game with Fuzzy Payoffs and Fuzzy Coalitions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3961-3976, October.
  • Handle: RePEc:spr:waterr:v:26:y:2012:i:13:p:3961-3976
    DOI: 10.1007/s11269-012-0115-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-012-0115-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-012-0115-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Shujin & Zhang, Qiang, 2009. "A simplified expression of the Shapley function for fuzzy game," European Journal of Operational Research, Elsevier, vol. 196(1), pages 234-245, July.
    2. Mehmet Kucukmehmetoglu, 2009. "A Game Theoretic Approach to Assess the Impacts of Major Investments on Transboundary Water Resources: The Case of the Euphrates and Tigris," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(15), pages 3069-3099, December.
    3. Tsurumi, Masayo & Tanino, Tetsuzo & Inuiguchi, Masahiro, 2001. "A Shapley function on a class of cooperative fuzzy games," European Journal of Operational Research, Elsevier, vol. 129(3), pages 596-618, March.
    4. Mojtaba Sadegh & Reza Kerachian, 2011. "Water Resources Allocation Using Solution Concepts of Fuzzy Cooperative Games: Fuzzy Least Core and Fuzzy Weak Least Core," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2543-2573, August.
    5. Mohammad Nikoo & Reza Kerachian & Hamed Poorsepahy-Samian, 2012. "An Interval Parameter Model for Cooperative Inter-Basin Water Resources Allocation Considering the Water Quality Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3329-3343, September.
    6. Mojtaba Sadegh & Najmeh Mahjouri & Reza Kerachian, 2010. "Optimal Inter-Basin Water Allocation Using Crisp and Fuzzy Shapley Games," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2291-2310, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Nikoo & Reza Kerachian & Mohammad Niksokhan, 2012. "Equitable Waste Load Allocation in Rivers Using Fuzzy Bi-matrix Games," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4539-4552, December.
    2. Shawei He & Keith Hipel & D. Kilgour, 2014. "Water Diversion Conflicts in China: A Hierarchical Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1823-1837, May.
    3. Mahdi Zarghami & Nasim Safari & Ferenc Szidarovszky & Shafiqul Islam, 2015. "Nonlinear Interval Parameter Programming Combined with Cooperative Games: a Tool for Addressing Uncertainty in Water Allocation Using Water Diplomacy Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4285-4303, September.
    4. S. Jamshid Mousavi & Nasrin Rafiee Anzab & Bentolhoda Asl-Rousta & Joong Hoon Kim, 2017. "Multi-Objective Optimization-Simulation for Reliability-Based Inter-Basin Water Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3445-3464, September.
    5. Armaghan Abed-Elmdoust & Reza Kerachian, 2014. "Evaluating the Relative Power of Water Users in Inter-Basin Water Transfer Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 495-509, January.
    6. Hamed Poorsepahy-Samian & Reza Kerachian & Mohammad Nikoo, 2012. "Water and Pollution Discharge Permit Allocation to Agricultural Zones: Application of Game Theory and Min-Max Regret Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4241-4257, November.
    7. Keighobad Jafarzadegan & Armaghan Abed-Elmdoust & Reza Kerachian, 2013. "A Fuzzy Variable Least Core Game for Inter-basin Water Resources Allocation Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3247-3260, July.
    8. Armaghan Abed-Elmdoust & Reza Kerachian, 2013. "Incorporating Economic and Political Considerations in Inter-Basin Water Allocations: A Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 859-870, February.
    9. Parna Parsapour-Moghaddam & Armaghan Abed-Elmdoust & Reza Kerachian, 2015. "A Heuristic Evolutionary Game Theoretic Methodology for Conjunctive Use of Surface and Groundwater Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3905-3918, September.
    10. Boyang Dai & Xiangfeng Yang & Xiaoyue Liu, 2022. "Shapley Value of Uncertain Coalitional Game based on Hurwicz Criterion with Application to Water Resource Allocation," Group Decision and Negotiation, Springer, vol. 31(1), pages 241-260, February.
    11. Ben Li & Guangming Tan & Gang Chen, 2016. "Generalized Uncooperative Planar Game Theory Model for Water Distribution in Transboundary Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 225-241, January.
    12. Maryam Ghashghaie & Safar Marofi & Hossein Marofi, 2014. "Using System Dynamics Method to Determine the Effect of Water Demand Priorities on Downstream Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5055-5072, November.
    13. Zhen Zhou & Meijia Zhang & Xiaohui Yu & Xijun He & Kang Wang & Quan Shao & Jie Wang & Hongxia Sun, 2019. "PM 2.5 Cooperative Control with Fuzzy Cost and Fuzzy Coalitions," IJERPH, MDPI, vol. 16(7), pages 1-14, April.
    14. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    15. Ben Li & Guangming Tan & Gang Chen, 2016. "Generalized Uncooperative Planar Game Theory Model for Water Distribution in Transboundary Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 225-241, January.
    16. Shen, Jianjian & Cheng, Chuntian & Zhang, Xiufei & Zhou, Binbin, 2018. "Coordinated operations of multiple-reservoir cascaded hydropower plants with cooperation benefit allocation," Energy, Elsevier, vol. 153(C), pages 509-518.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mojtaba Sadegh & Najmeh Mahjouri & Reza Kerachian, 2010. "Optimal Inter-Basin Water Allocation Using Crisp and Fuzzy Shapley Games," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2291-2310, August.
    2. Liu, Dehai & Ji, Xiaoxian & Tang, Jiafu & Li, Hongyi, 2020. "A fuzzy cooperative game theoretic approach for multinational water resource spatiotemporal allocation," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1025-1037.
    3. Mojtaba Sadegh & Reza Kerachian, 2011. "Water Resources Allocation Using Solution Concepts of Fuzzy Cooperative Games: Fuzzy Least Core and Fuzzy Weak Least Core," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2543-2573, August.
    4. Armaghan Abed-Elmdoust & Reza Kerachian, 2013. "Incorporating Economic and Political Considerations in Inter-Basin Water Allocations: A Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 859-870, February.
    5. Mehmet Kucukmehmetoglu & Abdurrahman Geymen, 2014. "Transboundary Water Resources Allocation under Various Parametric Conditions: The Case of the Euphrates & Tigris River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3515-3538, September.
    6. Yu-Hsien Liao, 2017. "Fuzzy games: a complement-consistent solution, axiomatizations and dynamic approaches," Fuzzy Optimization and Decision Making, Springer, vol. 16(3), pages 257-268, September.
    7. Mohammad Nikoo & Reza Kerachian & Hamed Poorsepahy-Samian, 2012. "An Interval Parameter Model for Cooperative Inter-Basin Water Resources Allocation Considering the Water Quality Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3329-3343, September.
    8. Yong Peng & Jinggang Chu & Anbang Peng & Huicheng Zhou, 2015. "Optimization Operation Model Coupled with Improving Water-Transfer Rules and Hedging Rules for Inter-Basin Water Transfer-Supply Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3787-3806, August.
    9. Zhenliang Liao & Phillip Hannam, 2013. "The Mekong Game: Achieving an All-win Situation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2611-2622, May.
    10. Zhisong Chen & Lingling Pei, 2018. "Inter-Basin Water Transfer Green Supply Chain Equilibrium and Coordination under Social Welfare Maximization," Sustainability, MDPI, vol. 10(4), pages 1-28, April.
    11. Ben Li & Guangming Tan & Gang Chen, 2016. "Generalized Uncooperative Planar Game Theory Model for Water Distribution in Transboundary Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 225-241, January.
    12. Fanyong Meng & Qiang Zhang & Xiaohong Chen, 2017. "Fuzzy Multichoice Games with Fuzzy Characteristic Functions," Group Decision and Negotiation, Springer, vol. 26(3), pages 565-595, May.
    13. Armaghan Abed-Elmdoust & Reza Kerachian, 2014. "Evaluating the Relative Power of Water Users in Inter-Basin Water Transfer Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 495-509, January.
    14. van den Brink, René & González-Arangüena, Enrique & Manuel, Conrado & del Pozo, Mónica, 2014. "Order monotonic solutions for generalized characteristic functions," European Journal of Operational Research, Elsevier, vol. 238(3), pages 786-796.
    15. Narges Taravatrooy & Mohammad Reza Nikoo & Mojtaba Sadegh & Mohammad Parvinnia, 2018. "A hybrid clustering-fusion methodology for land subsidence estimation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 905-926, November.
    16. Tido Takeng, Rodrigue, 2022. "Uncertain production environment and communication structure," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    17. Keighobad Jafarzadegan & Armaghan Abed-Elmdoust & Reza Kerachian, 2013. "A Fuzzy Variable Least Core Game for Inter-basin Water Resources Allocation Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3247-3260, July.
    18. Fanyong Meng & Xiaohong Chen & Chunqiao Tan, 2016. "Cooperative fuzzy games with interval characteristic functions," Operational Research, Springer, vol. 16(1), pages 1-24, April.
    19. Mohammad S. Khorshidi & Mohammad Reza Nikoo & Mojtaba Sadegh & Banafsheh Nematollahi, 2019. "A Multi-Objective Risk-Based Game Theoretic Approach to Reservoir Operation Policy in Potential Future Drought Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1999-2014, April.
    20. Zhisong Chen & Huimin Wang & Xiangtong Qi, 2013. "Pricing and Water Resource Allocation Scheme for the South-to-North Water Diversion Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1457-1472, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:26:y:2012:i:13:p:3961-3976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.