IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v17y2003i6p463-480.html
   My bibliography  Save this article

Water Release Policy Effects on the Shortage Characteristics for the Shihmen Reservoir System during Droughts

Author

Listed:
  • J. Shiau

Abstract

Drought-induced shortages are inevitable because of unexpected abnormal dry weather and the increasing need for water resources. Therefore, assessment of possible shortage conditions for a specific water supply system is an essential component in water resources planning and management. In this study, the shortage characteristics for the Shihmen Reservoir in Taiwan are investigated. A description of the reservoir yield in terms of the shortage frequency, magnitude, and duration is developed first. The derived reservoir yield description under a given operating policy and demand includes the reliability, total shortage rate, frequency, single period shortage, event shortage duration and magnitude, and interarrival time of shortage events. Hedging is a common measure adopted in reservoir operation that involves accepting a small current deficit to reduce future severe shortages. The reservoir supply index is then developed to trigger hedging in this study. The shortage characteristics for different lead-time hedging rules show that the derived reservoir supply index is a useful indicator for triggering hedging and the differences among reservoir performance for various release policies are easily compared using the derived reservoir yield description in terms of probabilistic shortage characteristics. Copyright Kluwer Academic Publishers 2003

Suggested Citation

  • J. Shiau, 2003. "Water Release Policy Effects on the Shortage Characteristics for the Shihmen Reservoir System during Droughts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 17(6), pages 463-480, December.
  • Handle: RePEc:spr:waterr:v:17:y:2003:i:6:p:463-480
    DOI: 10.1023/B:WARM.0000004958.93250.8a
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/B:WARM.0000004958.93250.8a
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/B:WARM.0000004958.93250.8a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu Zongxue & K. Jinno & A. Kawamura & S. Takesaki & K. Ito, 1998. "Performance Risk Analysis for Fukuoka Water Supply System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 12(1), pages 13-30, February.
    2. T. Neelakantan & N. Pundarikanthan, 1999. "Hedging Rule Optimisation for Water Supply Reservoirs System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 13(6), pages 409-426, December.
    3. Shih, Jhih-Shyang & ReVelle, Charles, 1995. "Water supply operations during drought: A discrete hedging rule," European Journal of Operational Research, Elsevier, vol. 82(1), pages 163-175, April.
    4. K. Srinivasan & M. Philipose, 1998. "Effect of Hedging on Over-Year Reservoir Performance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 12(2), pages 95-120, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oliver Olsson & Malika Ikramova & Melanie Bauer & Jochen Froebrich, 2010. "Applicability of Adapted Reservoir Operation for Water Stress Mitigation Under Dry Year Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(2), pages 277-297, January.
    2. J. Shiau & H. Lee, 2005. "Derivation of Optimal Hedging Rules for a Water-supply Reservoir through Compromise Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(2), pages 111-132, April.
    3. Xiang Zeng & Tiesong Hu & Xuning Guo & Xinjie Li, 2014. "Water Transfer Triggering Mechanism for Multi-Reservoir Operation in Inter-Basin Water Transfer-Supply Project," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1293-1308, March.
    4. Fang Wan & Wenlin Yuan & Jin Zhou, 2017. "Derivation of Tri-level Programming Model for Multi-Reservoir Optimal Operation in Inter-Basin Transfer-Diversion-Supply Project," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 479-494, January.
    5. Jenq-Tzong Shiau & Yen-Ning Hung & Huei-Er Sie, 2018. "Effects of Hedging Factors and Fuzziness on Shortage Characteristics During Droughts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1913-1929, March.
    6. Erica Camnasio & Gianfranco Becciu, 2011. "Evaluation of the Feasibility of Irrigation Storage in a Flood Detention Pond in an Agricultural Catchment in Northern Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1489-1508, March.
    7. Seung Beom Seo & Young-Oh Kim & Shin-Uk Kang, 2019. "Time-Varying Discrete Hedging Rules for Drought Contingency Plan Considering Long-Range Dependency in Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2791-2807, June.
    8. A. J. Adeloye & B.-S. Soundharajan & C. S. P. Ojha & R. Remesan, 2016. "Effect of Hedging-Integrated Rule Curves on the Performance of the Pong Reservoir (India) During Scenario-Neutral Climate Change Perturbations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 445-470, January.
    9. A. Adeloye & B.-S. Soundharajan & C. Ojha & R. Remesan, 2016. "Effect of Hedging-Integrated Rule Curves on the Performance of the Pong Reservoir (India) During Scenario-Neutral Climate Change Perturbations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 445-470, January.
    10. Wenquan Gu & Dongguo Shao & Yufang Jiang, 2012. "Risk Evaluation of Water Shortage in Source Area of Middle Route Project for South-to-North Water Transfer in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3479-3493, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Shiau & H. Lee, 2005. "Derivation of Optimal Hedging Rules for a Water-supply Reservoir through Compromise Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(2), pages 111-132, April.
    2. Alireza Dariane & Farzane Karami, 2014. "Deriving Hedging Rules of Multi-Reservoir System by Online Evolving Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3651-3665, September.
    3. Hui Wang & Junguo Liu, 2013. "Reservoir Operation Incorporating Hedging Rules and Operational Inflow Forecasts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1427-1438, March.
    4. Seung Beom Seo & Young-Oh Kim & Shin-Uk Kang, 2019. "Time-Varying Discrete Hedging Rules for Drought Contingency Plan Considering Long-Range Dependency in Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2791-2807, June.
    5. Rui Hui & Jay Lund & Jianshi Zhao & Tongtiegang Zhao, 2016. "Optimal Pre-storm Flood Hedging Releases for a Single Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5113-5129, November.
    6. Xiang Zeng & Tiesong Hu & Xuning Guo & Xinjie Li, 2014. "Water Transfer Triggering Mechanism for Multi-Reservoir Operation in Inter-Basin Water Transfer-Supply Project," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1293-1308, March.
    7. Jenq-Tzong Shiau & Yen-Ning Hung & Huei-Er Sie, 2018. "Effects of Hedging Factors and Fuzziness on Shortage Characteristics During Droughts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1913-1929, March.
    8. Yong Peng & Jinggang Chu & Anbang Peng & Huicheng Zhou, 2015. "Optimization Operation Model Coupled with Improving Water-Transfer Rules and Hedging Rules for Inter-Basin Water Transfer-Supply Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3787-3806, August.
    9. T. Neelakantan & N. Pundarikanthan, 1999. "Hedging Rule Optimisation for Water Supply Reservoirs System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 13(6), pages 409-426, December.
    10. Youngkyu Jin & Sangho Lee, 2019. "Comparative Effectiveness of Reservoir Operation Applying Hedging Rules Based on Available Water and Beginning Storage to Cope with Droughts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1897-1911, March.
    11. A. Adeloye & M. Montaseri, 1999. "Predicting Critical Period to Characterise Over-Year and Within-Year Reservoir Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 13(6), pages 383-407, December.
    12. Gi Joo Kim & Seung Beom Seo & Young-Oh Kim, 2022. "Adaptive Reservoir Management by Reforming the Zone-based Hedging Rules against Multi-year Droughts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3575-3590, August.
    13. A. J. Adeloye & B.-S. Soundharajan & C. S. P. Ojha & R. Remesan, 2016. "Effect of Hedging-Integrated Rule Curves on the Performance of the Pong Reservoir (India) During Scenario-Neutral Climate Change Perturbations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 445-470, January.
    14. A. Adeloye & B.-S. Soundharajan & C. Ojha & R. Remesan, 2016. "Effect of Hedging-Integrated Rule Curves on the Performance of the Pong Reservoir (India) During Scenario-Neutral Climate Change Perturbations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 445-470, January.
    15. Xuning Guo & Tiesong Hu & Conglin Wu & Tao Zhang & Yibing Lv, 2013. "Multi-Objective Optimization of the Proposed Multi-Reservoir Operating Policy Using Improved NSPSO," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2137-2153, May.
    16. Glendenning, C.J. & Vervoort, R.W., 2011. "Hydrological impacts of rainwater harvesting (RWH) in a case study catchment: The Arvari River, Rajasthan, India: Part 2. Catchment-scale impacts," Agricultural Water Management, Elsevier, vol. 98(4), pages 715-730, February.
    17. Kim, Ungtae & Kaluarachchi, Jagath J. & Smakhtin, Vladimir U., 2008. "Climate change impacts on hydrology and water resources of the Upper Blue Nile River Basin, Ethiopia," IWMI Research Reports 53025, International Water Management Institute.
    18. Beshavard, Mahdi & Adib, Arash & Ashrafi, Seyed Mohammad & Kisi, Ozgur, 2022. "Establishing effective warning storage to derive optimal reservoir operation policy based on the drought condition," Agricultural Water Management, Elsevier, vol. 274(C).
    19. O. Haddad & M. Tabari & E. Fallah-Mehdipour & M. Mariño, 2013. "Groundwater Model Calibration by Meta-Heuristic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2515-2529, May.
    20. João Vieira & Maria Conceição Cunha, 2017. "Nested Optimization Approach for the Capacity Expansion of Multiquality Water Supply Systems under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1381-1395, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:17:y:2003:i:6:p:463-480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.