IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v24y2015i4p681-700.html
   My bibliography  Save this article

Detecting non-simultaneous changes in means of vectors

Author

Listed:
  • Daniela Jarušková

Abstract

Likelihood ratio type test statistics are suggested for detecting changes in means of coordinates of observed random vectors. It is supposed that changes in different coordinates need not to occur at the same time. Under the assumption of no change, asymptotic distributions of the proposed test statistics are given by distributions of maxima of $$\chi ^2$$ χ 2 random fields. High-level exceedance probabilities of non-homogeneous $$\chi ^2$$ χ 2 fields may be applied to get approximate asymptotic critical values. Copyright Sociedad de Estadística e Investigación Operativa 2015

Suggested Citation

  • Daniela Jarušková, 2015. "Detecting non-simultaneous changes in means of vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 681-700, December.
  • Handle: RePEc:spr:testjl:v:24:y:2015:i:4:p:681-700
    DOI: 10.1007/s11749-015-0429-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-015-0429-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-015-0429-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hidalgo, Javier & Seo, Myung Hwan, 2013. "Testing for structural stability in the whole sample," Journal of Econometrics, Elsevier, vol. 175(2), pages 84-93.
    2. Jarusková, Daniela & Piterbarg, Vladimir I., 2011. "Log-likelihood ratio test for detecting transient change," Statistics & Probability Letters, Elsevier, vol. 81(5), pages 552-559, May.
    3. Erhard Reschenhofer & David Preinerstorfer & Lukas Steinberger, 2013. "Non-monotonic penalizing for the number of structural breaks," Computational Statistics, Springer, vol. 28(6), pages 2585-2598, December.
    4. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
    5. Jaromír Antoch & Daniela Jarušková, 2013. "Testing for multiple change points," Computational Statistics, Springer, vol. 28(5), pages 2161-2183, October.
    6. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    7. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    8. Horváth, Lajos & Kokoszka, Piotr & Steinebach, Josef, 1999. "Testing for Changes in Multivariate Dependent Observations with an Application to Temperature Changes," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 96-119, January.
    9. Lajos Horváth & Gregory Rice, 2014. "Rejoinder on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 287-290, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorenzo Escot & Julio E. Sandubete & Łukasz Pietrych, 2023. "Detecting Structural Changes in Time Series by Using the BDS Test Recursively: An Application to COVID-19 Effects on International Stock Markets," Mathematics, MDPI, vol. 11(23), pages 1-18, December.
    2. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2023. "Testing for changes in linear models using weighted residuals," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    3. Pouliot, William, 2016. "Robust tests for change in intercept and slope in linear regression models with application to manager performance in the mutual fund industry," Economic Modelling, Elsevier, vol. 58(C), pages 523-534.
    4. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
    5. Federico A. Bugni & Jia Li & Qiyuan Li, 2023. "Permutation‐based tests for discontinuities in event studies," Quantitative Economics, Econometric Society, vol. 14(1), pages 37-70, January.
    6. Bouzebda, Salim & Ferfache, Anouar Abdeldjaoued, 2023. "Asymptotic properties of semiparametric M-estimators with multiple change points," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    7. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    8. Tianming Xu & Yuesong Wei, 2023. "Ratio Test for Mean Changes in Time Series with Heavy-Tailed AR( p ) Noise Based on Multiple Sampling Methods," Mathematics, MDPI, vol. 11(18), pages 1-14, September.
    9. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    10. Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2020. "Change-point methods for multivariate time-series: paired vectorial observations," Statistical Papers, Springer, vol. 61(4), pages 1351-1383, August.
    11. Fabrizio Ghezzi & Eduardo Rossi & Lorenzo Trapani, 2024. "Fast Online Changepoint Detection," Papers 2402.04433, arXiv.org.
    12. Jiang, Feiyu & Wang, Runmin & Shao, Xiaofeng, 2023. "Robust inference for change points in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    13. Kleiber, Christian, 2016. "Structural Change in (Economic) Time Series," Working papers 2016/06, Faculty of Business and Economics - University of Basel.
    14. Abhimanyu Gupta & Myung Hwan Seo, 2023. "Robust Inference on Infinite and Growing Dimensional Time‐Series Regression," Econometrica, Econometric Society, vol. 91(4), pages 1333-1361, July.
    15. Hidalgo, Javier & Schafgans, Marcia, 2017. "Inference and testing breaks in large dynamic panels with strong cross sectional dependence," Journal of Econometrics, Elsevier, vol. 196(2), pages 259-274.
    16. Haeran Cho & Claudia Kirch, 2022. "Two-stage data segmentation permitting multiscale change points, heavy tails and dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 653-684, August.
    17. Lajos Horváth & Curtis Miller & Gregory Rice, 2021. "Detecting early or late changes in linear models with heteroscedastic errors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 577-609, June.
    18. Jaromír Antoch & Jan Hanousek & Lajos Horváth & Marie Hušková & Shixuan Wang, 2019. "Structural breaks in panel data: Large number of panels and short length time series," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 828-855, August.
    19. Elena Andreou & Eric Ghysels, 2002. "Detecting multiple breaks in financial market volatility dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 579-600.
    20. Liu, Peng & Ji, Lanpeng, 2017. "Extremes of locally stationary chi-square processes with trend," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 497-525.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:24:y:2015:i:4:p:681-700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.