IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.04433.html
   My bibliography  Save this paper

Fast Online Changepoint Detection

Author

Listed:
  • Fabrizio Ghezzi
  • Eduardo Rossi
  • Lorenzo Trapani

Abstract

We study online changepoint detection in the context of a linear regression model. We propose a class of heavily weighted statistics based on the CUSUM process of the regression residuals, which are specifically designed to ensure timely detection of breaks occurring early on during the monitoring horizon. We subsequently propose a class of composite statistics, constructed using different weighing schemes; the decision rule to mark a changepoint is based on the largest statistic across the various weights, thus effectively working like a veto-based voting mechanism, which ensures fast detection irrespective of the location of the changepoint. Our theory is derived under a very general form of weak dependence, thus being able to apply our tests to virtually all time series encountered in economics, medicine, and other applied sciences. Monte Carlo simulations show that our methodologies are able to control the procedure-wise Type I Error, and have short detection delays in the presence of breaks.

Suggested Citation

  • Fabrizio Ghezzi & Eduardo Rossi & Lorenzo Trapani, 2024. "Fast Online Changepoint Detection," Papers 2402.04433, arXiv.org.
  • Handle: RePEc:arx:papers:2402.04433
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.04433
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aue, Alexander & Horváth, Lajos & Reimherr, Matthew L., 2009. "Delay times of sequential procedures for multiple time series regression models," Journal of Econometrics, Elsevier, vol. 149(2), pages 174-190, April.
    2. Horváth, Lajos & Kokoszka, Piotr & Steinebach, Josef, 2007. "On sequential detection of parameter changes in linear regression," Statistics & Probability Letters, Elsevier, vol. 77(9), pages 885-895, May.
    3. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
    4. Bruce E. Hansen, 2001. "The New Econometrics of Structural Change: Dating Breaks in U.S. Labour Productivity," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 117-128, Fall.
    5. Ľluboš Pástor & Robert F. Stambaugh, 2001. "The Equity Premium and Structural Breaks," Journal of Finance, American Finance Association, vol. 56(4), pages 1207-1239, August.
    6. Casini, Alessandro, 2023. "Theory of evolutionary spectra for heteroskedasticity and autocorrelation robust inference in possibly misspecified and nonstationary models," Journal of Econometrics, Elsevier, vol. 235(2), pages 372-392.
    7. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    8. Alexander Aue & Lajos Horváth & Piotr Kokoszka & Josef Steinebach, 2008. "Monitoring shifts in mean: Asymptotic normality of stopping times," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(3), pages 515-530, November.
    9. Lajos Horváth & Gregory Rice, 2014. "Rejoinder on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 287-290, June.
    10. Chu, Chia-Shang James & Stinchcombe, Maxwell & White, Halbert, 1996. "Monitoring Structural Change," Econometrica, Econometric Society, vol. 64(5), pages 1045-1065, September.
    11. Aue, Alexander & Horváth, Lajos, 2004. "Delay time in sequential detection of change," Statistics & Probability Letters, Elsevier, vol. 67(3), pages 221-231, April.
    12. Lajos Horváth & Curtis Miller & Gregory Rice, 2020. "A New Class of Change Point Test Statistics of Rényi Type," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 570-579, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoga, Yannick, 2017. "Monitoring multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 105-121.
    2. KUROZUMI, Eiji & 黒住, 英司, 2016. "Monitoring Parameter Constancy with Endogenous Regressors," Discussion Papers 2016-01, Graduate School of Economics, Hitotsubashi University.
    3. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2023. "Testing for changes in linear models using weighted residuals," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    4. Horváth, Lajos & Liu, Zhenya & Rice, Gregory & Wang, Shixuan, 2020. "Sequential monitoring for changes from stationarity to mild non-stationarity," Journal of Econometrics, Elsevier, vol. 215(1), pages 209-238.
    5. Josua Gösmann & Tobias Kley & Holger Dette, 2021. "A new approach for open‐end sequential change point monitoring," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(1), pages 63-84, January.
    6. Pierre Perron & Eduardo Zorita & Eiji Kurozumi, 2017. "Monitoring Parameter Constancy with Endogenous Regressors," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 791-805, September.
    7. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    8. Martin Wagner & Dominik Wied, 2017. "Consistent Monitoring of Cointegrating Relationships: The US Housing Market and the Subprime Crisis," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 960-980, November.
    9. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    10. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
    11. Yudong Chen & Tengyao Wang & Richard J. Samworth, 2022. "High‐dimensional, multiscale online changepoint detection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 234-266, February.
    12. Chen, Yudong & Wang, Tengyao & Samworth, Richard J., 2022. "High-dimensional, multiscale online changepoint detection," LSE Research Online Documents on Economics 113665, London School of Economics and Political Science, LSE Library.
    13. Claudia Kirch & Christina Stoehr, 2022. "Sequential change point tests based on U‐statistics," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1184-1214, September.
    14. Chen, Zhanshou & Tian, Zheng, 2010. "Modified procedures for change point monitoring in linear models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(1), pages 62-75.
    15. Aue, Alexander & Horváth, Lajos & Reimherr, Matthew L., 2009. "Delay times of sequential procedures for multiple time series regression models," Journal of Econometrics, Elsevier, vol. 149(2), pages 174-190, April.
    16. Lorenzo Trapani & Emily Whitehouse, 2020. "Sequential monitoring for cointegrating regressions," Papers 2003.12182, arXiv.org.
    17. Lajos Horv'ath & Lorenzo Trapani, 2023. "Real-time monitoring with RCA models," Papers 2312.11710, arXiv.org.
    18. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    19. Wagner, Martin & Wied, Dominik, 2014. "Monitoring Stationarity and Cointegration," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100386, Verein für Socialpolitik / German Economic Association.
    20. Julia Reynolds & Leopold Sögner & Martin Wagner, 2021. "Deviations from Triangular Arbitrage Parity in Foreign Exchange and Bitcoin Markets," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 13(2), pages 105-146, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.04433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.