IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v23y2014i1p153-194.html
   My bibliography  Save this article

P-splines quantile regression estimation in varying coefficient models

Author

Listed:
  • Y. Andriyana
  • I. Gijbels
  • A. Verhasselt

Abstract

Quantile regression, as a generalization of median regression, has been widely used in statistical modeling. To allow for analyzing complex data situations, several flexible regression models have been introduced. Among these are the varying coefficient models, that differ from a classical linear regression model by the fact that the regression coefficients are no longer constant but functions that vary with the value taken by another variable, such as for example, time. In this paper, we study quantile regression in varying coefficient models for longitudinal data. The quantile function is modeled as a function of the covariates and the main task is to estimate the unknown regression coefficient functions. We approximate each coefficient function by means of P-splines. Theoretical properties of the estimators, such as rate of convergence and an asymptotic distribution are established. The estimation methodology requests solving an optimization problem that also involves a smoothing parameter. For a special case the optimization problem can be transformed into a linear programming problem for which then a Frisch–Newton interior point method is used, leading to a computationally fast and efficient procedure. Several data-driven choices of the smoothing parameters are briefly discussed, and their performances are illustrated in a simulation study. Some real data analysis demonstrates the use of the developed method. Copyright Sociedad de Estadística e Investigación Operativa 2014

Suggested Citation

  • Y. Andriyana & I. Gijbels & A. Verhasselt, 2014. "P-splines quantile regression estimation in varying coefficient models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 153-194, March.
  • Handle: RePEc:spr:testjl:v:23:y:2014:i:1:p:153-194
    DOI: 10.1007/s11749-013-0346-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-013-0346-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-013-0346-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frees,Edward W., 2004. "Longitudinal and Panel Data," Cambridge Books, Cambridge University Press, number 9780521828284.
    2. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    3. Wang, Lifeng & Li, Hongzhe & Huang, Jianhua Z., 2008. "Variable Selection in Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1556-1569.
    4. Anestis Antoniadis & Irène Gijbels & Mila Nikolova, 2011. "Penalized likelihood regression for generalized linear models with non-quadratic penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 585-615, June.
    5. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    6. Noh, Hohsuk & Chung, Kwanghun & Van Keilegom, Ingrid, 2012. "Variable selection of varying coefficient models in quantile regression," LIDAM Reprints ISBA 2012008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Noh, Hohsuk & Chung, Kwanghun & Van Keilegom, Ingrid, 2012. "Variable Selection of Varying Coefficient Models in Quantile Regression," LIDAM Discussion Papers ISBA 2012020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    9. Lamarche, Carlos, 2010. "Robust penalized quantile regression estimation for panel data," Journal of Econometrics, Elsevier, vol. 157(2), pages 396-408, August.
    10. Zou, Hui & Yuan, Ming, 2008. "Regularized simultaneous model selection in multiple quantiles regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5296-5304, August.
    11. Li, Youjuan & Liu, Yufeng & Zhu, Ji, 2007. "Quantile Regression in Reproducing Kernel Hilbert Spaces," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 255-268, March.
    12. Zhang, Wenyang & Lee, Sik-Yum & Song, Xinyuan, 2002. "Local Polynomial Fitting in Semivarying Coefficient Model," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 166-188, July.
    13. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    14. Frees,Edward W., 2004. "Longitudinal and Panel Data," Cambridge Books, Cambridge University Press, number 9780521535380.
    15. Jianhua Z. Huang, 2002. "Varying-coefficient models and basis function approximations for the analysis of repeated measurements," Biometrika, Biometrika Trust, vol. 89(1), pages 111-128, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan-Yong Zhao & Jin-Guan Lin & Hong-Xia Wang & Xing-Fang Huang, 2017. "Jump-detection-based estimation in time-varying coefficient models and empirical applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 574-599, September.
    2. Weihua Zhao & Weiping Zhang & Heng Lian, 2020. "Marginal quantile regression for varying coefficient models with longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 213-234, February.
    3. Y. Andriyana & I. Gijbels & A. Verhasselt, 2018. "Quantile regression in varying-coefficient models: non-crossing quantile curves and heteroscedasticity," Statistical Papers, Springer, vol. 59(4), pages 1589-1621, December.
    4. Y. Andriyana & I. Gijbels, 2017. "Quantile regression in heteroscedastic varying coefficient models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(2), pages 151-176, April.
    5. Hong-Xia Xu & Guo-Liang Fan & Zhen-Long Chen & Jiang-Feng Wang, 2018. "Weighted quantile regression and testing for varying-coefficient models with randomly truncated data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(4), pages 565-588, October.
    6. Takuma Yoshida, 2016. "Asymptotics and smoothing parameter selection for penalized spline regression with various loss functions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 278-303, November.
    7. Ziyi Li & Yijian Huang & Dattatraya Patil & Martin G. Sanda, 2023. "Covariate adjustment in continuous biomarker assessment," Biometrics, The International Biometric Society, vol. 79(1), pages 39-48, March.
    8. Feng, Xiang-Nan & Wang, Yifan & Lu, Bin & Song, Xin-Yuan, 2017. "Bayesian regularized quantile structural equation models," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 234-248.
    9. Bertho Tantular & Budi Nurani Ruchjana & Yudhie Andriyana & Anneleen Verhasselt, 2023. "Quantile Regression in Space-Time Varying Coefficient Model of Upper Respiratory Tract Infections Data," Mathematics, MDPI, vol. 11(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    2. Shi, Peng & Frees, Edward W., 2010. "Long-tail longitudinal modeling of insurance company expenses," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 303-314, December.
    3. Yufeng Liu & Yichao Wu, 2011. "Simultaneous multiple non-crossing quantile regression estimation using kernel constraints," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 415-437.
    4. Javier Alejo, 2013. "Relación de Kuznets en América Latina. Explorando más allá de la media condicional," Económica, Departamento de Economía, Facultad de Ciencias Económicas, Universidad Nacional de La Plata, vol. 59, pages 3-55, January-D.
    5. Rosen, Adam M., 2012. "Set identification via quantile restrictions in short panels," Journal of Econometrics, Elsevier, vol. 166(1), pages 127-137.
    6. Lijuan Huo & Tae-Hwan Kim & Yunmi Kim, 2013. "Testing for Autocorrelation in Quantile Regression Models," Working papers 2013rwp-54, Yonsei University, Yonsei Economics Research Institute.
    7. Denis Chetverikov & Bradley Larsen & Christopher Palmer, 2016. "IV Quantile Regression for Group‐Level Treatments, With an Application to the Distributional Effects of Trade," Econometrica, Econometric Society, vol. 84, pages 809-833, March.
    8. Guilherme Resende Oliveira & Benjamin Miranda Tabak & José Guilherme de Lara Resende & Daniel Oliveira Cajueiro, 2012. "Determinantes da Estrutura de Capital das Empresas Brasileiras: uma abordagem em regressão quantílica," Working Papers Series 272, Central Bank of Brazil, Research Department.
    9. Battagliola, Maria Laura & Sørensen, Helle & Tolver, Anders & Staicu, Ana-Maria, 2022. "A bias-adjusted estimator in quantile regression for clustered data," Econometrics and Statistics, Elsevier, vol. 23(C), pages 165-186.
    10. Manuel Arellano & Stéphane Bonhomme, 2016. "Nonlinear panel data estimation via quantile regressions," Econometrics Journal, Royal Economic Society, vol. 19(3), pages 61-94, October.
    11. Weihua Zhao & Weiping Zhang & Heng Lian, 2020. "Marginal quantile regression for varying coefficient models with longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 213-234, February.
    12. Genya Kobayashi & Hideo Kozumi, 2012. "Bayesian analysis of quantile regression for censored dynamic panel data," Computational Statistics, Springer, vol. 27(2), pages 359-380, June.
    13. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    14. Wu, Chen & Rogers, Cynthia L., 2017. "One Size Does Not Fit All: Foreign Direct Investment Promotion Policies across US States," Journal of Regional Analysis and Policy, Mid-Continent Regional Science Association, vol. 48(1), April.
    15. Geraci, Marco, 2019. "Modelling and estimation of nonlinear quantile regression with clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 30-46.
    16. Zou, Hui & Yuan, Ming, 2008. "Regularized simultaneous model selection in multiple quantiles regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5296-5304, August.
    17. Alexander Aue & Rex C. Y. Cheung & Thomas C. M. Lee & Ming Zhong, 2014. "Segmented Model Selection in Quantile Regression Using the Minimum Description Length Principle," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1241-1256, September.
    18. Chaohui Guo & Hu Yang & Jing Lv, 2017. "Robust variable selection in high-dimensional varying coefficient models based on weighted composite quantile regression," Statistical Papers, Springer, vol. 58(4), pages 1009-1033, December.
    19. Jun Jin & Tiefeng Ma & Jiajia Dai & Shuangzhe Liu, 2021. "Penalized weighted composite quantile regression for partially linear varying coefficient models with missing covariates," Computational Statistics, Springer, vol. 36(1), pages 541-575, March.
    20. Cai, Zongwu & Chen, Linna & Fang, Ying, 2018. "A semiparametric quantile panel data model with an application to estimating the growth effect of FDI," Journal of Econometrics, Elsevier, vol. 206(2), pages 531-553.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:23:y:2014:i:1:p:153-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.