IDEAS home Printed from https://ideas.repec.org/a/spr/sumafo/v29y2021i2d10.1007_s00550-021-00516-6.html
   My bibliography  Save this article

A holistic approach to model electricity loads in cities
[Ein ganzheitlicher Ansatz zur Modellierung des Stromverbrauchs in Städten]

Author

Listed:
  • S. Köhler

    (Hochschule für Technik Stuttgart)

  • M. Betz

    (Hochschule für Technik Stuttgart)

  • E. Duminil

    (Hochschule für Technik Stuttgart)

  • U. Eicker

    (Concordia University)

  • B. Schröter

    (Hochschule für Technik Stuttgart)

Abstract

Time-resolved, occupancy-dependent electricity load profiles at building level for city quarters or entire cities are important for planning authorities, project developers, utilities or other stakeholders in order to develop energy saving strategies and meet climate targets. Firstly, this information enables a more accurate modelling of renewable energy systems. Secondly, aspects like sector coupling, storage decisions and the impact of technologies such as electric vehicles or heat pumps on the grid can be considered. Thirdly, it allows a more detailed economic analysis. This paper contains the newly added features to the simulation environment SimStadt, which is used for strategic modelling of sustainable urban or regional areas with a spatial resolution at the building level. SimStadt interlinks 3D CityGML models with parameters for buildings physics to simulate energy demands and renewable energy potential. It was enhanced by the development of an electricity load profile generator with variable resolution and the addition of an hourly resolved PV potential analysis including a variable economic analysis. This enables e.g. the evaluation of photovoltaic potential with the associated investment, operating and levelized costs over the lifetime of hundreds of individual buildings in parallel. Together with additional electric building demand from heat pumps, electric vehicles or load shifting options through the use of battery storage, it will be possible to assess and compare the feasibility, benefits and economic viability of energy/electricity-related urban renewal measures in even greater detail and with a holistic perspective. The simulation platform enables the development of granular sustainable urban (sub)strategies and energy concepts through a holistic, time-resolved, building-specific approach to support transformation of the building stock to a sustainable, low-carbon one.

Suggested Citation

  • S. Köhler & M. Betz & E. Duminil & U. Eicker & B. Schröter, 2021. "A holistic approach to model electricity loads in cities [Ein ganzheitlicher Ansatz zur Modellierung des Stromverbrauchs in Städten]," NachhaltigkeitsManagementForum | Sustainability Management Forum, Springer, vol. 29(2), pages 143-152, June.
  • Handle: RePEc:spr:sumafo:v:29:y:2021:i:2:d:10.1007_s00550-021-00516-6
    DOI: 10.1007/s00550-021-00516-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00550-021-00516-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00550-021-00516-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Verena Weiler & Jonas Stave & Ursula Eicker, 2019. "Renewable Energy Generation Scenarios Using 3D Urban Modeling Tools—Methodology for Heat Pump and Co-Generation Systems with Case Study Application †," Energies, MDPI, vol. 12(3), pages 1-19, January.
    2. Allegrini, Jonas & Orehounig, Kristina & Mavromatidis, Georgios & Ruesch, Florian & Dorer, Viktor & Evins, Ralph, 2015. "A review of modelling approaches and tools for the simulation of district-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1391-1404.
    3. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2019. "Development of a GIS-based platform for the allocation and optimisation of distributed storage in urban energy systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Hay, John E., 1993. "Calculating solar radiation for inclined surfaces: Practical approaches," Renewable Energy, Elsevier, vol. 3(4), pages 373-380.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiler, Verena & Lust, Daniel & Brennenstuhl, Marcus & Brassel, Kai-Holger & Duminil, Eric & Eicker, Ursula, 2022. "Automatic dimensioning of energy system components for building cluster simulation," Applied Energy, Elsevier, vol. 313(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Horak, Daniel & Hainoun, Ali & Neugebauer, Georg & Stoeglehner, Gernot, 2022. "A review of spatio-temporal urban energy system modeling for urban decarbonization strategy formulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    3. Verena Weiler & Ursula Eicker, 2021. "Automatic energy demand and system simulation at district level," NachhaltigkeitsManagementForum | Sustainability Management Forum, Springer, vol. 29(2), pages 133-141, June.
    4. Ghaemi, Zahra & Tran, Thomas T.D. & Smith, Amanda D., 2022. "Comparing classical and metaheuristic methods to optimize multi-objective operation planning of district energy systems considering uncertainties," Applied Energy, Elsevier, vol. 321(C).
    5. Verena Weiler & Jonas Stave & Ursula Eicker, 2019. "Renewable Energy Generation Scenarios Using 3D Urban Modeling Tools—Methodology for Heat Pump and Co-Generation Systems with Case Study Application †," Energies, MDPI, vol. 12(3), pages 1-19, January.
    6. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    7. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    8. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    9. Elzbieta Rynska & Joanna Klimowicz & Slawomir Kowal & Krzysztof Lyzwa & Michal Pierzchalski & Wojciech Rekosz, 2020. "Smart Energy Solutions as an Indispensable Multi-Criteria Input for a Coherent Urban Planning and Building Design Process—Two Case Studies for Smart Office Buildings in Warsaw Downtown Area," Energies, MDPI, vol. 13(15), pages 1-24, July.
    10. Piotr Michalak, 2021. "Modelling of Solar Irradiance Incident on Building Envelopes in Polish Climatic Conditions: The Impact on Energy Performance Indicators of Residential Buildings," Energies, MDPI, vol. 14(14), pages 1-27, July.
    11. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    12. David Drysdale & Brian Vad Mathiesen & Henrik Lund, 2019. "From Carbon Calculators to Energy System Analysis in Cities," Energies, MDPI, vol. 12(12), pages 1-21, June.
    13. Marzullo, Thibault & Keane, Marcus M. & Geron, Marco & Monaghan, Rory F.D., 2019. "A computational toolchain for the automatic generation of multiple Reduced-Order Models from CFD simulations," Energy, Elsevier, vol. 180(C), pages 511-519.
    14. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    15. Wirtz, Marco, 2023. "nPro: A web-based planning tool for designing district energy systems and thermal networks," Energy, Elsevier, vol. 268(C).
    16. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Tozzi, Peter & Jo, Jin Ho, 2017. "A comparative analysis of renewable energy simulation tools: Performance simulation model vs. system optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 390-398.
    18. McKenna, R. & Bertsch, V. & Mainzer, K. & Fichtner, W., 2018. "Combining local preferences with multi-criteria decision analysis and linear optimization to develop feasible energy concepts in small communities," European Journal of Operational Research, Elsevier, vol. 268(3), pages 1092-1110.
    19. Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
    20. Johan Simonsson & Khalid Tourkey Atta & Gerald Schweiger & Wolfgang Birk, 2021. "Experiences from City-Scale Simulation of Thermal Grids," Resources, MDPI, vol. 10(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sumafo:v:29:y:2021:i:2:d:10.1007_s00550-021-00516-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.