IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v4y2023i4d10.1007_s43069-023-00259-8.html
   My bibliography  Save this article

Identifying the Influential Factors in Increasing the Efficiency of Network Systems: A Mixed Binary Linear Programming

Author

Listed:
  • Reza Feizabadi

    (Hakim Sabzevari University)

  • Mehri Bagherian

    (University of Guilan)

Abstract

Old models in data envelopment analysis (DEA) consider decision-making units (DMUs) as black boxes. Therefore, they do not have a proper efficiency to evaluate network systems. This shortcoming has led to the emergence of network models that take the performance of a system’s processes into account in calculating the performance, and some of which also assign a certain value of performance to the processes. However, no model has examined the effect of intermediate factors in a network system, while the study of these intermediate factors can greatly help to increase the efficiency of a system. In this paper, our aim is to present a mixed binary linear programming that identifies the intermediate factors that are relatively more effective in increasing the performance of a network system. At the end, the new model is implemented on a small network system in order to better describe the performance, as well as on a real-world network system.

Suggested Citation

  • Reza Feizabadi & Mehri Bagherian, 2023. "Identifying the Influential Factors in Increasing the Efficiency of Network Systems: A Mixed Binary Linear Programming," SN Operations Research Forum, Springer, vol. 4(4), pages 1-14, December.
  • Handle: RePEc:spr:snopef:v:4:y:2023:i:4:d:10.1007_s43069-023-00259-8
    DOI: 10.1007/s43069-023-00259-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-023-00259-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-023-00259-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kao, Chiang, 2009. "Efficiency decomposition in network data envelopment analysis: A relational model," European Journal of Operational Research, Elsevier, vol. 192(3), pages 949-962, February.
    2. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    3. Heydari, Chiman & Omrani, Hashem & Taghizadeh, Rahim, 2020. "A fully fuzzy network DEA-Range Adjusted Measure model for evaluating airlines efficiency: A case of Iran," Journal of Air Transport Management, Elsevier, vol. 89(C).
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    6. Chen, Yao & Cook, Wade D. & Kao, Chiang & Zhu, Joe, 2013. "Network DEA pitfalls: Divisional efficiency and frontier projection under general network structures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 507-515.
    7. H Amatatsu & T Ueda & Y Amatatsu, 2012. "Efficiency and returns-to-scale of local governments," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(3), pages 299-305, March.
    8. Kao, Chiang, 2009. "Efficiency measurement for parallel production systems," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1107-1112, August.
    9. Lee, Chia-Yen & Johnson, Andrew L., 2012. "Two-dimensional efficiency decomposition to measure the demand effect in productivity analysis," European Journal of Operational Research, Elsevier, vol. 216(3), pages 584-593.
    10. Chiang Kao, 2014. "Efficiency Decomposition in Network Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 55-77, Springer.
    11. Fukuyama, Hirofumi & Mirdehghan, S.M., 2012. "Identifying the efficiency status in network DEA," European Journal of Operational Research, Elsevier, vol. 220(1), pages 85-92.
    12. Chiou, Yu-Chiun & Lan, Lawrence W. & Yen, Barbara T.H., 2010. "A joint measurement of efficiency and effectiveness for non-storable commodities: Integrated data envelopment analysis approaches," European Journal of Operational Research, Elsevier, vol. 201(2), pages 477-489, March.
    13. C Kao, 2012. "Efficiency decomposition for parallel production systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(1), pages 64-71, January.
    14. Lin, Tzu-Yu & Chiu, Sheng-Hsiung, 2013. "Using independent component analysis and network DEA to improve bank performance evaluation," Economic Modelling, Elsevier, vol. 32(C), pages 608-616.
    15. Ouyang, Wendi & Yang, Jian-bo, 2020. "The network energy and environment efficiency analysis of 27 OECD countries: A multiplicative network DEA model," Energy, Elsevier, vol. 197(C).
    16. Yu, Hang & Zhang, Yahua & Zhang, Anming & Wang, Kun & Cui, Qiang, 2019. "A comparative study of airline efficiency in China and India: A dynamic network DEA approach," Research in Transportation Economics, Elsevier, vol. 76(C).
    17. Abolghasem Shamsijamkhaneh & Seyed Mohammad Hadjimolana & Bijan Rahmani Parchicolaie & Farhad Hosseinzadehlotfi, 2018. "Incorporation of Inefficiency Associated with Link Flows in Efficiency Measurement in Network DEA," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-12, January.
    18. Kao, Chiang, 2014. "Efficiency decomposition for general multi-stage systems in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 232(1), pages 117-124.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    2. Kao, Chiang, 2016. "Efficiency decomposition and aggregation in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 255(3), pages 778-786.
    3. Kao, Chiang, 2020. "Decomposition of slacks-based efficiency measures in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 283(2), pages 588-600.
    4. Kao, Chiang, 2014. "Efficiency decomposition in network data envelopment analysis with slacks-based measures," Omega, Elsevier, vol. 45(C), pages 1-6.
    5. Kao, Chiang, 2018. "Multiplicative aggregation of division efficiencies in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 270(1), pages 328-336.
    6. Kremantzis, Marios Dominikos & Beullens, Patrick & Kyrgiakos, Leonidas Sotirios & Klein, Jonathan, 2022. "Measurement and evaluation of multi-function parallel network hierarchical DEA systems," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    7. Kao, Chiang, 2019. "Inefficiency identification for closed series production systems," European Journal of Operational Research, Elsevier, vol. 275(2), pages 599-607.
    8. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    9. Victor John M. Cantor & Kim Leng Poh, 2020. "Efficiency measurement for general network systems: a slacks-based measure model," Journal of Productivity Analysis, Springer, vol. 54(1), pages 43-57, August.
    10. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    11. Kao, Chiang & Hwang, Shiuh-Nan, 2014. "Multi-period efficiency and Malmquist productivity index in two-stage production systems," European Journal of Operational Research, Elsevier, vol. 232(3), pages 512-521.
    12. Mirdehghan, S. Morteza & Fukuyama, Hirofumi, 2016. "Pareto–Koopmans efficiency and network DEA," Omega, Elsevier, vol. 61(C), pages 78-88.
    13. Khezrimotlagh, Dariush & Kaffash, Sepideh & Zhu, Joe, 2022. "U.S. airline mergers’ performance and productivity change," Journal of Air Transport Management, Elsevier, vol. 102(C).
    14. Koronakos, Gregory & Sotiros, Dimitris & Despotis, Dimitris K. & Kritikos, Manolis N., 2022. "Fair efficiency decomposition in network DEA: A compromise programming approach," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    15. Antonio Peyrache & Maria C. A. Silva, 2022. "Efficiency and Productivity Analysis from a System Perspective: Historical Overview," Springer Books, in: Duangkamon Chotikapanich & Alicia N. Rambaldi & Nicholas Rohde (ed.), Advances in Economic Measurement, chapter 0, pages 173-230, Springer.
    16. Kao, Chiang, 2017. "Efficiency measurement and frontier projection identification for general two-stage systems in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 261(2), pages 679-689.
    17. Fenfen Li & Bo Dai & Qifan Wu, 2021. "Dynamic Green Growth Assessment of China’s Industrial System with an Improved SBM Model and Global Malmquist Index," Mathematics, MDPI, vol. 9(20), pages 1-26, October.
    18. Nafiseh Javaherian & Ali Hamzehee & Hossein Sayyadi Tooranloo, 2021. "A compositional approach to two-stage Data Envelopment Analysis in intuitionistic fuzzy environment," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 21-39.
    19. Chia-Chin Chang & Chia-Syuan Chang, 2023. "Influences of Talent Cultivation and Utilization on the National Human Resource Development System Performance: An International Study Using a Two-Stage Data Envelopment Analysis Model," Mathematics, MDPI, vol. 11(13), pages 1-18, June.
    20. Patrizii, Vincenzo, 2020. "On network two stages variable returns to scale Dea models," Omega, Elsevier, vol. 97(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:4:y:2023:i:4:d:10.1007_s43069-023-00259-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.