IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v98y2014i3d10.1007_s11192-013-1131-4.html
   My bibliography  Save this article

Technology–industry networks in technology commercialization: evidence from Korean university patents

Author

Listed:
  • Yongrae Cho

    (KAIST)

  • Wonjoon Kim

    (KAIST)

Abstract

Although there is increasing interest in policy issues on university patents, studies hitherto have focused on certain limited factors or case studies. By using a two-mode network analysis, this study identifies idiosyncratic patterns and differences in technology–industry networks between the two groups of Korean university patents—commercialized and non-commercialized. We collected patent data including bibliographic information from Korean universities that have run a patent management advisor dispatch program since 2005. Then, network analysis and analysis of variance for the two groups were conducted to investigate the group differences. We found that the structure of the technology–industry network was significantly more direct and simpler for commercialized than for non-commercialized patents. Specifically, we found that both direct and indirect linkages between technology and related industry were more complex for the non-commercialized group than for the commercialized one: the direct linkage was stronger for the commercialized than for the non-commercialized group. Our study suggests an important aspect of technology commercialization from the perspective of the inherent characteristics of patents, which is at variance with the evolutionary approaches of previous studies.

Suggested Citation

  • Yongrae Cho & Wonjoon Kim, 2014. "Technology–industry networks in technology commercialization: evidence from Korean university patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1785-1810, March.
  • Handle: RePEc:spr:scient:v:98:y:2014:i:3:d:10.1007_s11192-013-1131-4
    DOI: 10.1007/s11192-013-1131-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-013-1131-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-013-1131-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coralio Ballester & Antoni Calvó-Armengol & Yves Zenou, 2006. "Who's Who in Networks. Wanted: The Key Player," Econometrica, Econometric Society, vol. 74(5), pages 1403-1417, September.
    2. Rebecca Henderson & Adam B. Jaffe & Manuel Trajtenberg, 1998. "Universities As A Source Of Commercial Technology: A Detailed Analysis Of University Patenting, 1965-1988," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 119-127, February.
    3. Paroma Sanyal, 2003. "Understanding patents: The role Of R&D funding sources and the patent office," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 12(6), pages 507-529.
    4. Poh Kam Wong & Annette Singh, 2013. "Do co-publications with industry lead to higher levels of university technology commercialization activity?," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(2), pages 245-265, November.
    5. Thursby, Jerry & Fuller, Anne W. & Thursby, Marie, 2009. "US faculty patenting: Inside and outside the university," Research Policy, Elsevier, vol. 38(1), pages 14-25, February.
    6. Dirk Czarnitzki & Cindy Lopes-Bento, 2014. "Innovation Subsidies: Does the Funding Source Matter for Innovation Intensity and Performance? Empirical Evidence from Germany," Industry and Innovation, Taylor & Francis Journals, vol. 21(5), pages 380-409, July.
    7. Xianwen Wang & Di Liu & Kun Ding & Xinran Wang, 2012. "Science funding and research output: a study on 10 countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 591-599, May.
    8. Samuel Kortum & Jonathan Putnam, 1997. "Assigning Patents to Industries: Tests of the Yale Technology Concordance," Economic Systems Research, Taylor & Francis Journals, vol. 9(2), pages 161-176.
    9. Dominique Guellec & Bruno Van Pottelsberghe de la Potterie, 2004. "From R&D to Productivity Growth: Do the Institutional Settings and the Source of Funds of R&D Matter?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(3), pages 353-378, July.
    10. Giuliani, Elisa & Arza, Valeria, 2009. "What drives the formation of 'valuable' university-industry linkages?: Insights from the wine industry," Research Policy, Elsevier, vol. 38(6), pages 906-921, July.
    11. Ta-Shun Cho & Hsin-Yu Shih, 2011. "Patent citation network analysis of core and emerging technologies in Taiwan: 1997–2008," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(3), pages 795-811, December.
    12. Dirk Czarnitzki & Katrin Hussinger & Cédric Schneider, 2009. "Why Challenge the Ivory Tower? New Evidence on the Basicness of Academic Patents," Kyklos, Wiley Blackwell, vol. 62(4), pages 488-499, November.
    13. Tibor Braun & Ildikó Dióspatonyi & Erika Zádor & Sándor Zsindely, 2007. "Journal gatekeepers indicator-based top universities of the world, of Europe and of 29 countries — A pilot study," Scientometrics, Springer;Akadémiai Kiadó, vol. 71(2), pages 155-178, May.
    14. Pitkethly, Robert H., 2001. "Intellectual property strategy in Japanese and UK companies: patent licensing decisions and learning opportunities," Research Policy, Elsevier, vol. 30(3), pages 425-442, March.
    15. Duk Hee Lee & Il Won Seo & Ho Chull Choe & Hee Dae Kim, 2012. "Collaboration network patterns and research performance: the case of Korean public research institutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 925-942, June.
    16. Xianwen Wang & Shenmeng Xu & Zhi Wang & Lian Peng & Chuanli Wang, 2013. "International scientific collaboration of China: collaborating countries, institutions and individuals," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(3), pages 885-894, June.
    17. Fabrizio, Kira R. & Di Minin, Alberto, 2008. "Commercializing the laboratory: Faculty patenting and the open science environment," Research Policy, Elsevier, vol. 37(5), pages 914-931, June.
    18. Baba, Yasunori & Shichijo, Naohiro & Sedita, Silvia Rita, 2009. "How do collaborations with universities affect firms' innovative performance? The role of "Pasteur scientists" in the advanced materials field," Research Policy, Elsevier, vol. 38(5), pages 756-764, June.
    19. Gilbert, Richard J & Newbery, David M G, 1982. "Preemptive Patenting and the Persistence of Monopoly," American Economic Review, American Economic Association, vol. 72(3), pages 514-526, June.
    20. Powers, Joshua B. & McDougall, Patricia P., 2005. "University start-up formation and technology licensing with firms that go public: a resource-based view of academic entrepreneurship," Journal of Business Venturing, Elsevier, vol. 20(3), pages 291-311, May.
    21. Park, Han Woo & Leydesdorff, Loet, 2010. "Longitudinal trends in networks of university-industry-government relations in South Korea: The role of programmatic incentives," Research Policy, Elsevier, vol. 39(5), pages 640-649, June.
    22. Martin Meyer & Tatiana Siniläinen & Jan Timm Utecht, 2003. "Towards hybrid Triple Helix indicators: A study of university-related patents and a survey of academic inventors," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(2), pages 321-350, October.
    23. Donald S. Siegel & Reinhilde Veugelers & Mike Wright, 2007. "Technology transfer offices and commercialization of university intellectual property: performance and policy implications," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 23(4), pages 640-660, Winter.
    24. Poh Kam Wong & Annette Singh, 2010. "University patenting activities and their link to the quantity and quality of scientific publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(1), pages 271-294, April.
    25. Nicola Baldini, 2008. "Negative effects of university patenting: Myths and grounded evidence," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(2), pages 289-311, May.
    26. Ernst, Holger, 2003. "Patent information for strategic technology management," World Patent Information, Elsevier, vol. 25(3), pages 233-242, September.
    27. Corey C. Phelps, 2010. "A longitudinal study of the influence of alliance network structure and composition on firm exploratory innovation," Post-Print hal-00528392, HAL.
    28. Nitin Nohria & Carlos Garcia‐Pont, 1991. "Global strategic linkages and industry structure," Strategic Management Journal, Wiley Blackwell, vol. 12(S1), pages 105-124, June.
    29. Gay, Brigitte & Dousset, Bernard, 2005. "Innovation and network structural dynamics: Study of the alliance network of a major sector of the biotechnology industry," Research Policy, Elsevier, vol. 34(10), pages 1457-1475, December.
    30. Juan D Rogers & Barry Bozeman & Ivan Chompalov, 2001. "Obstacles and opportunities in the application of network analysis to the evaluation of R&D," Research Evaluation, Oxford University Press, vol. 10(3), pages 161-172, December.
    31. Daniel K. N. Johnson, 2002. "The OECD Technology Concordance (OTC): Patents by Industry of Manufacture and Sector of Use," OECD Science, Technology and Industry Working Papers 2002/5, OECD Publishing.
    32. Stephen P. Borgatti, 2006. "Identifying sets of key players in a social network," Computational and Mathematical Organization Theory, Springer, vol. 12(1), pages 21-34, April.
    33. Park, Yongtae & Yoon, Byungun & Lee, Sungjoo, 2005. "The idiosyncrasy and dynamism of technological innovation across industries: patent citation analysis," Technology in Society, Elsevier, vol. 27(4), pages 471-485.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Wonjoon, 2015. "The current transition in management of technology education: The case of Korea," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 5-20.
    2. Sanghoon Lee & Wonjoon Kim, 2017. "The knowledge network dynamics in a mobile ecosystem: a patent citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 717-742, May.
    3. Kalantaridis, Christos & Küttim, Merle, 2023. "Multi-dimensional time and university technology commercialisation as opportunity praxis: A realist synthesis of the accumulated literature," Technovation, Elsevier, vol. 122(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Euiseok Kim & Yongrae Cho & Wonjoon Kim, 2014. "Dynamic patterns of technological convergence in printed electronics technologies: patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 975-998, February.
    2. Pluvia Zuniga, 2011. "The State of Patenting at Research Institutions in Developing Countries: Policy Approaches and Practices," WIPO Economic Research Working Papers 04, World Intellectual Property Organization - Economics and Statistics Division, revised Dec 2011.
    3. repec:wip:wpaper:4 is not listed on IDEAS
    4. Shu-Hao Chang, 2022. "Examining Key Technologies Among Academic Patents Through an Analysis of Standard-Essential Patents," SAGE Open, , vol. 12(3), pages 21582440221, July.
    5. Andrea Bonaccorsi & Daniele Biancardi & Mabel Sanchez Barrioluengo & Federico Biagi, 2019. "Study on Higher Education Institutions and Local Development," JRC Research Reports JRC117272, Joint Research Centre.
    6. Fini, Riccardo & Lacetera, Nicola & Shane, Scott, 2010. "Inside or outside the IP system? Business creation in academia," Research Policy, Elsevier, vol. 39(8), pages 1060-1069, October.
    7. Cornelia Lawson, 2013. "Academic patenting: the importance of industry support," The Journal of Technology Transfer, Springer, vol. 38(4), pages 509-535, August.
    8. Ani Gerbin & Mateja Drnovsek, 2016. "Determinants and public policy implications of academic-industry knowledge transfer in life sciences: a review and a conceptual framework," The Journal of Technology Transfer, Springer, vol. 41(5), pages 979-1076, October.
    9. Van Looy, Bart & Landoni, Paolo & Callaert, Julie & van Pottelsberghe, Bruno & Sapsalis, Eleftherios & Debackere, Koenraad, 2011. "Entrepreneurial effectiveness of European universities: An empirical assessment of antecedents and trade-offs," Research Policy, Elsevier, vol. 40(4), pages 553-564, May.
    10. Cornelia Lawson, 2013. "Academic Inventions Outside the University: Investigating Patent Ownership in the UK," Industry and Innovation, Taylor & Francis Journals, vol. 20(5), pages 385-398, July.
    11. Beck, Mathias & Junge, Martin & Kaiser, Ulrich, 2017. "Public Funding and Corporate Innovation," IZA Discussion Papers 11196, Institute of Labor Economics (IZA).
    12. Paola Giuri & Federico Munari & Martina Pasquini, 2013. "What Determines University Patent Commercialization? Empirical Evidence on the Role of IPR Ownership," Industry and Innovation, Taylor & Francis Journals, vol. 20(5), pages 488-502, July.
    13. Inchae Park & Yujin Jeong & Byungun Yoon, 2017. "Analyzing the value of technology based on the differences of patent citations between applicants and examiners," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 665-691, May.
    14. Magerman, Tom & Looy, Bart Van & Debackere, Koenraad, 2015. "Does involvement in patenting jeopardize one’s academic footprint? An analysis of patent-paper pairs in biotechnology," Research Policy, Elsevier, vol. 44(9), pages 1702-1713.
    15. Aldridge, T. Taylor & Audretsch, David, 2011. "The Bayh-Dole Act and scientist entrepreneurship," Research Policy, Elsevier, vol. 40(8), pages 1058-1067, October.
    16. Francesco Lissoni, 2013. "Intellectual property and university–industry technology transfer," Chapters, in: Faïz Gallouj & Luis Rubalcaba & Paul Windrum (ed.), Public–Private Innovation Networks in Services, chapter 7, pages 164-194, Edward Elgar Publishing.
    17. Foray, Dominique & Lissoni, Francesco, 2010. "University Research and Public–Private Interaction," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 275-314, Elsevier.
    18. Ugo Rizzo & Valerio Sterzi, 2022. "Characterising science-industry patent collaborations: knowledge base, impact and economic value," Working Papers hal-03896633, HAL.
    19. Tijssen, Robert J.W., 2018. "Anatomy of use-inspired researchers: From Pasteur’s Quadrant to Pasteur’s Cube model," Research Policy, Elsevier, vol. 47(9), pages 1626-1638.
    20. Christian Fisch & Tobias Hassel & Philipp Sandner & Joern Block, 2015. "University patenting: a comparison of 300 leading universities worldwide," The Journal of Technology Transfer, Springer, vol. 40(2), pages 318-345, April.
    21. Park, Jongyong & Lee, Hakyeon & Park, Yongtae, 2009. "Disembodied knowledge flows among industrial clusters: A patent analysis of the Korean manufacturing sector," Technology in Society, Elsevier, vol. 31(1), pages 73-84.

    More about this item

    Keywords

    University patent; Technology commercialization; Network analysis;
    All these keywords.

    JEL classification:

    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:98:y:2014:i:3:d:10.1007_s11192-013-1131-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.