IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v71y2007i3d10.1007_s11192-007-1698-8.html
   My bibliography  Save this article

Factors to evaluate a patent in addition to citations

Author

Listed:
  • Shyh-Jen Wang

    (Taipei Veterans General Hospital
    National Yang-Ming University
    National Taiwan University of Science and Technology)

Abstract

The emergence of patent citations as a tool for patent estimation has been subjected to equally vocal champions and critics. In additional to patent citation, this article aims to contribute other factors, including court decisions, claim language, extension cases, patent family and portfolio, which should be deliberated during patent evaluation. It introduces the subject-matter by discussing the specialties and peculiarities of these proposed factors. Furthermore, comparisons between the patent citations and these factors are presented by illustrating several well-known patents. The results of the comparisons reveal that an adverse conclusion might be drawn if a patent is estimated only based on citations. The conclusion supports Meyer’s study that “the general nature of a common framework for both scientific and patent citations would severely limit its usefulness.” Therefore, those factors discussed in the article would be a great asset in patent evaluation. However, it only illustrates their impact on patent estimation using a couple well-known patents. Future research would be needed to investigate these factors in a more detailed manner.

Suggested Citation

  • Shyh-Jen Wang, 2007. "Factors to evaluate a patent in addition to citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 71(3), pages 509-522, June.
  • Handle: RePEc:spr:scient:v:71:y:2007:i:3:d:10.1007_s11192-007-1698-8
    DOI: 10.1007/s11192-007-1698-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-007-1698-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-007-1698-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meyer, Martin, 2000. "Does science push technology? Patents citing scientific literature," Research Policy, Elsevier, vol. 29(3), pages 409-434, March.
    2. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    3. Carpenter, Mark P. & Narin, Francis, 1983. "Validation study: Patent citations as indicators of science and foreign dependence," World Patent Information, Elsevier, vol. 5(3), pages 180-185.
    4. Martin Meyer, 2000. "What is Special about Patent Citations? Differences between Scientific and Patent Citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 49(1), pages 93-123, August.
    5. Martin Meyer, 2000. "Patent Citations in a Novel Field of Technology — What Can They Tell about Interactions between Emerging Communities of Science and Technology?," Scientometrics, Springer;Akadémiai Kiadó, vol. 48(2), pages 151-178, September.
    6. Robert Dalpé, 2002. "Bibliometric analysis of biotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 55(2), pages 189-213, August.
    7. Arnold Verbeek & Koenraad Debackere & Marc Luwel, 2003. "Science cited in patents: A geographic "flow" analysis of bibliographic citation patterns in patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(2), pages 241-263, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong-Gil Lee & Ji-Hoon Lee, 2010. "Different characteristics between auctioned and non-auctioned patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 135-148, January.
    2. George Messinis, 2011. "Triadic citations, country biases and patent value: the case of pharmaceuticals," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(3), pages 813-833, December.
    3. Scott D. Bass & Lukasz A. Kurgan, 2010. "Discovery of factors influencing patent value based on machine learning in patents in the field of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 217-241, February.
    4. Anthony Breitzman & Patrick Thomas, 2015. "Inventor team size as a predictor of the future citation impact of patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 631-647, May.
    5. Kaidong Feng & Ziying Jiang, 2021. "State Capacity and Innovation Policy Performance: A Comparative Study on Two Types of Innovation Projects in China," Review of Policy Research, Policy Studies Organization, vol. 38(4), pages 427-453, July.
    6. Yi Zhang & Yue Qian & Ying Huang & Ying Guo & Guangquan Zhang & Jie Lu, 2017. "An entropy-based indicator system for measuring the potential of patents in technological innovation: rejecting moderation," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1925-1946, June.
    7. Yutao Sun & Chen Zhang & Robert A. W. Kok, 2020. "The role of research outcome quality in the relationship between university research collaboration and technology transfer: empirical results from China," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 1003-1026, February.
    8. Zhao Qu & Shanshan Zhang & Chunbo Zhang, 2017. "Patent research in the field of library and information science: Less useful or difficult to explore?," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 205-217, April.
    9. Song, Haoyang & Hou, Jianhua & Zhang, Yang, 2023. "The measurements and determinants of patent technological value: Lifetime, strength, breadth, and dispersion from the technology diffusion perspective," Journal of Informetrics, Elsevier, vol. 17(1).
    10. Yong-Gil Lee, 2009. "What affects a patent’s value? An analysis of variables that affect technological, direct economic, and indirect economic value: An exploratory conceptual approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 79(3), pages 623-633, June.
    11. Breitzman, Anthony & Thomas, Patrick, 2015. "The Emerging Clusters Model: A tool for identifying emerging technologies across multiple patent systems," Research Policy, Elsevier, vol. 44(1), pages 195-205.
    12. Mu-Hsuan Huang & Dar-Zen Chen & Danqi Shen & Mona S. Wang & Fred Y. Ye, 2015. "Measuring technological performance of assignees using trace metrics in three fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 61-86, July.
    13. Chihmao Hsieh, 2011. "Explicitly searching for useful inventions: dynamic relatedness and the costs of connecting versus synthesizing," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(2), pages 381-404, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    2. Acosta, Manuel & Coronado, Daniel, 2003. "Science-technology flows in Spanish regions: An analysis of scientific citations in patents," Research Policy, Elsevier, vol. 32(10), pages 1783-1803, December.
    3. R. Karpagam & S. Gopalakrishnan & M. Natarajan & B. Ramesh Babu, 2011. "Mapping of nanoscience and nanotechnology research in India: a scientometric analysis, 1990–2009," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 501-522, November.
    4. Wang, Jean J. & Ye, Fred Y., 2021. "Probing into the interactions between papers and patents of new CRISPR/CAS9 technology: A citation comparison," Journal of Informetrics, Elsevier, vol. 15(4).
    5. Ahmad Barirani & Bruno Agard & Catherine Beaudry, 2013. "Discovering and assessing fields of expertise in nanomedicine: a patent co-citation network perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1111-1136, March.
    6. Yan Qi & Xin Zhang & Zhengyin Hu & Bin Xiang & Ran Zhang & Shu Fang, 2022. "Choosing the right collaboration partner for innovation: a framework based on topic analysis and link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5519-5550, September.
    7. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    8. Hsi-Yin Yeh & Yi-Shan Sung & Hsiao-Wen Yang & Wan-Chu Tsai & Dar-Zen Chen, 2013. "The bibliographic coupling approach to filter the cited and uncited patent citations: a case of electric vehicle technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 75-93, January.
    9. Guang Yu & Ming-Yang Wang & Da-Ren Yu, 2010. "Characterizing knowledge diffusion of Nanoscience & Nanotechnology by citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(1), pages 81-97, July.
    10. Chihmao Hsieh, 2011. "Explicitly searching for useful inventions: dynamic relatedness and the costs of connecting versus synthesizing," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(2), pages 381-404, February.
    11. Ali Gazni & Zahra Ghaseminik, 2019. "The increasing dominance of science in the economy: Which nations are successful?," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1411-1426, September.
    12. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    13. Seongkyoon Jeong & Jong-Chan Kim & Jae Young Choi, 2015. "Technology convergence: What developmental stage are we in?," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 841-871, September.
    14. Joaquín M. Azagra-Caro, 2012. "Access to universities’ public knowledge: who’s more nationalist?," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 671-691, June.
    15. Bronwyn H. Hall & Grid Thoma & Salvatore Torrisi, 2009. "Financial Patenting in Europe," NBER Working Papers 14714, National Bureau of Economic Research, Inc.
    16. Yashuang Qi & Na Zhu & Yujia Zhai & Ying Ding, 2018. "The mutually beneficial relationship of patents and scientific literature: topic evolution in nanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 893-911, May.
    17. Czarnitzki, Dirk & Hussinger, Katrin & Schneider, Cédric, 2011. "“Wacky” patents meet economic indicators," Economics Letters, Elsevier, vol. 113(2), pages 131-134.
    18. Jiancheng Guan & Ying He, 2007. "Patent-bibliometric analysis on the Chinese science — technology linkages," Scientometrics, Springer;Akadémiai Kiadó, vol. 72(3), pages 403-425, September.
    19. Jyun-Cheng Wang & Cheng-hsin Chiang & Shu-Wei Lin, 2010. "Network structure of innovation: can brokerage or closure predict patent quality?," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(3), pages 735-748, September.
    20. Huang, Mu-Hsuan & Huang, Wei-Tzu & Chen, Dar-Zen, 2014. "Technological impact factor: An indicator to measure the impact of academic publications on practical innovation," Journal of Informetrics, Elsevier, vol. 8(1), pages 241-251.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:71:y:2007:i:3:d:10.1007_s11192-007-1698-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.