IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v118y2019i3d10.1007_s11192-018-2992-3.html
   My bibliography  Save this article

Universities’ structural commitment to interdisciplinary research

Author

Listed:
  • Erin Leahey

    (University of Arizona)

  • Sondra N. Barringer

    (Southern Methodist University)

  • Misty Ring-Ramirez

    (University of Arizona)

Abstract

In recent years, science policy experts have been promoting interdisciplinary research (IDR) in order to foster innovation and address grand scientific challenges. But to date we know little about whether, how, and to what extent universities are committed to fostering this type of research. This paper develops the first measure of university commitment to IDR, which relies on the organizational structuring of research activity into research centers and departments. We extend the previous literature by measuring, rather than assuming, the interdisciplinary nature of research units. Using a large amount of textual data from 157 research universities in the United States, and combining machine learning and confirmatory factor analysis techniques, we develop a continuous and composite measure that taps universities’ structural commitment to IDR. We then examine the commitment exhibited by specific universities and how such commitment varies by university characteristics like size, resources, and region. Results show that the fraction of centers and departments that are interdisciplinary is critical to measuring a university’s structural commitment to IDR and to developing specific research policies aimed at fostering IDR.

Suggested Citation

  • Erin Leahey & Sondra N. Barringer & Misty Ring-Ramirez, 2019. "Universities’ structural commitment to interdisciplinary research," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 891-919, March.
  • Handle: RePEc:spr:scient:v:118:y:2019:i:3:d:10.1007_s11192-018-2992-3
    DOI: 10.1007/s11192-018-2992-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-018-2992-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-018-2992-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vincent Larivière & Yves Gingras, 2010. "On the relationship between interdisciplinarity and scientific impact," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(1), pages 126-131, January.
    2. Christopher C. Morphew & Matthew Hartley, 2006. "Mission Statements: A Thematic Analysis of Rhetoric across Institutional Type," The Journal of Higher Education, Taylor & Francis Journals, vol. 77(3), pages 456-471, May.
    3. Alexis-Michel Mugabushaka & Anthi Kyriakou & Theo Papazoglou, 2016. "Bibliometric indicators of interdisciplinarity: the potential of the Leinster–Cobbold diversity indices to study disciplinary diversity," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 593-607, May.
    4. Jha, Yamini & Welch, Eric W., 2010. "Relational mechanisms governing multifaceted collaborative behavior of academic scientists in six fields of science and engineering," Research Policy, Elsevier, vol. 39(9), pages 1174-1184, November.
    5. Vincent Larivière & Yves Gingras, 2010. "On the relationship between interdisciplinarity and scientific impact," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(1), pages 126-131, January.
    6. Millar, Morgan M., 2013. "Interdisciplinary research and the early career: The effect of interdisciplinary dissertation research on career placement and publication productivity of doctoral graduates in the sciences," Research Policy, Elsevier, vol. 42(5), pages 1152-1164.
    7. Mathies, Charles & Slaughter, Sheila, 2013. "University trustees as channels between academe and industry: Toward an understanding of the executive science network," Research Policy, Elsevier, vol. 42(6), pages 1286-1300.
    8. Pablo Jensen & Katsiaryna Lutkouskaya, 2014. "The many dimensions of laboratories’ interdisciplinarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 619-631, January.
    9. Boardman, P. Craig & Corley, Elizabeth A., 2008. "University research centers and the composition of research collaborations," Research Policy, Elsevier, vol. 37(5), pages 900-913, June.
    10. Jimi Adams & Ryan Light, 2014. "Mapping Interdisciplinary Fields: Efficiencies, Gaps and Redundancies in HIV/AIDS Research," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-13, December.
    11. repec:mpr:mprres:6050 is not listed on IDEAS
    12. Sheila Slaughter & Scott L. Thomas & David R. Johnson & Sondra N. Barringer, 2014. "Institutional Conflict of Interest: The Role of Interlocking Directorates in the Scientific Relationships between Universities and the Corporate Sector," The Journal of Higher Education, Taylor & Francis Journals, vol. 85(1), pages 1-35, January.
    13. Catherine Lyall & Ann Bruce & Wendy Marsden & Laura Meagher, 2013. "The role of funding agencies in creating interdisciplinary knowledge," Science and Public Policy, Oxford University Press, vol. 40(1), pages 62-71, January.
    14. Kabo, Felichism W. & Cotton-Nessler, Natalie & Hwang, Yongha & Levenstein, Margaret C. & Owen-Smith, Jason, 2014. "Proximity effects on the dynamics and outcomes of scientific collaborations," Research Policy, Elsevier, vol. 43(9), pages 1469-1485.
    15. Ismael Rafols & Martin Meyer, 2010. "Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 263-287, February.
    16. Owen-Smith, Jason, 2003. "From separate systems to a hybrid order: accumulative advantage across public and private science at Research One universities," Research Policy, Elsevier, vol. 32(6), pages 1081-1104, June.
    17. Lorenzo Cassi & Wilfriedo Mescheba & Élisabeth Turckheim, 2014. "How to evaluate the degree of interdisciplinarity of an institution?," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1871-1895, December.
    18. Ying Cheng & Nian Cai Liu, 2006. "A first approach to the classification of the top 500 world universities by their disciplinary characteristics using scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(1), pages 135-150, July.
    19. Kenneth A. Bollen, 1989. "A New Incremental Fit Index for General Structural Equation Models," Sociological Methods & Research, , vol. 17(3), pages 303-316, February.
    20. Tanmoy Chakraborty, 2018. "Role of interdisciplinarity in computer sciences: quantification, impact and life trajectory," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1011-1029, March.
    21. Zehra Taşkın & Arsev U. Aydinoglu, 2015. "Collaborative interdisciplinary astrobiology research: a bibliometric study of the NASA Astrobiology Institute," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(3), pages 1003-1022, June.
    22. Wagner, Caroline S. & Roessner, J. David & Bobb, Kamau & Klein, Julie Thompson & Boyack, Kevin W. & Keyton, Joann & Rafols, Ismael & Börner, Katy, 2011. "Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature," Journal of Informetrics, Elsevier, vol. 5(1), pages 14-26.
    23. Bercovitz, Janet & Feldman, Maryann, 2011. "The mechanisms of collaboration in inventive teams: Composition, social networks, and geography," Research Policy, Elsevier, vol. 40(1), pages 81-93, February.
    24. Hugo Horta & João M. Santos, 2016. "An instrument to measure individuals’ research agenda setting: the multi-dimensional research agendas inventory," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1243-1265, September.
    25. Alan L. Porter & Alex S. Cohen & J. David Roessner & Marty Perreault, 2007. "Measuring researcher interdisciplinarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 72(1), pages 117-147, July.
    26. Sabharwal, Meghna & Hu, Qian, 2013. "Participation in university-based research centers: Is it helping or hurting researchers?," Research Policy, Elsevier, vol. 42(6), pages 1301-1311.
    27. Shiji Chen & Clément Arsenault & Yves Gingras & Vincent Larivière, 2015. "Exploring the interdisciplinary evolution of a discipline: the case of Biochemistry and Molecular Biology," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1307-1323, February.
    28. Patricia J. Gumport & Stuart K. Snydman, 2002. "The Formal Organization of Knowledge," The Journal of Higher Education, Taylor & Francis Journals, vol. 73(3), pages 375-408, May.
    29. Barry Bozeman & Craig Boardman, 2013. "Academic Faculty in University Research Centers: Neither Capitalism's Slaves nor Teaching Fugitives," The Journal of Higher Education, Taylor & Francis Journals, vol. 84(1), pages 88-120, January.
    30. Joachim Schummer, 2004. "Multidisciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(3), pages 425-465, March.
    31. Daniel J. Hopkins & Gary King, 2010. "A Method of Automated Nonparametric Content Analysis for Social Science," American Journal of Political Science, John Wiley & Sons, vol. 54(1), pages 229-247, January.
    32. Susan Biancani & Daniel A. McFarland & Linus Dahlander, 2014. "The Semiformal Organization," Organization Science, INFORMS, vol. 25(5), pages 1306-1324, October.
    33. Rafols, Ismael & Leydesdorff, Loet & O’Hare, Alice & Nightingale, Paul & Stirling, Andy, 2012. "How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management," Research Policy, Elsevier, vol. 41(7), pages 1262-1282.
    34. Michael Gowanlock & Rich Gazan, 2013. "Assessing researcher interdisciplinarity: a case study of the University of Hawaii NASA Astrobiology Institute," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 133-161, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sondra N. Barringer & Erin Leahey & Karina Salazar, 2020. "What Catalyzes Research Universities to Commit to Interdisciplinary Research?," Research in Higher Education, Springer;Association for Institutional Research, vol. 61(6), pages 679-705, September.
    2. Leahey, Erin & Barringer, Sondra N., 2020. "Universities’ commitment to interdisciplinary research: To what end?," Research Policy, Elsevier, vol. 49(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leahey, Erin & Barringer, Sondra N., 2020. "Universities’ commitment to interdisciplinary research: To what end?," Research Policy, Elsevier, vol. 49(2).
    2. Alfonso Ávila-Robinson & Cristian Mejia & Shintaro Sengoku, 2021. "Are bibliometric measures consistent with scientists’ perceptions? The case of interdisciplinarity in research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7477-7502, September.
    3. Hackett, Edward J. & Leahey, Erin & Parker, John N. & Rafols, Ismael & Hampton, Stephanie E. & Corte, Ugo & Chavarro, Diego & Drake, John M. & Penders, Bart & Sheble, Laura & Vermeulen, Niki & Vision,, 2021. "Do synthesis centers synthesize? A semantic analysis of topical diversity in research," Research Policy, Elsevier, vol. 50(1).
    4. Xuefeng Wang & Zhinan Wang & Ying Huang & Yun Chen & Yi Zhang & Huichao Ren & Rongrong Li & Jinhui Pang, 2017. "Measuring interdisciplinarity of a research system: detecting distinction between publication categories and citation categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 2023-2039, June.
    5. Hongyu Zhou & Raf Guns & Tim C. E. Engels, 2022. "Are social sciences becoming more interdisciplinary? Evidence from publications 1960–2014," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(9), pages 1201-1221, September.
    6. Chen, Shiji & Qiu, Junping & Arsenault, Clément & Larivière, Vincent, 2021. "Exploring the interdisciplinarity patterns of highly cited papers," Journal of Informetrics, Elsevier, vol. 15(1).
    7. Lin Zhang & Beibei Sun & Zaida Chinchilla-Rodríguez & Lixin Chen & Ying Huang, 2018. "Interdisciplinarity and collaboration: on the relationship between disciplinary diversity in departmental affiliations and reference lists," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 271-291, October.
    8. Wooseok Jang & Heeyeul Kwon & Yongtae Park & Hakyeon Lee, 2018. "Predicting the degree of interdisciplinarity in academic fields: the case of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 231-254, July.
    9. Sander Zwanenburg & Maryam Nakhoda & Peter Whigham, 2022. "Toward greater consistency and validity in measuring interdisciplinarity: a systematic and conceptual evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7769-7788, December.
    10. Qing Ke, 2023. "Interdisciplinary research and technological impact: evidence from biomedicine," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2035-2077, April.
    11. Zuo, Zhiya & Zhao, Kang, 2018. "The more multidisciplinary the better? – The prevalence and interdisciplinarity of research collaborations in multidisciplinary institutions," Journal of Informetrics, Elsevier, vol. 12(3), pages 736-756.
    12. Lorenzo Cassi & Wilfriedo Mescheba & Élisabeth Turckheim, 2014. "How to evaluate the degree of interdisciplinarity of an institution?," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1871-1895, December.
    13. Shiji Chen & Yanhui Song & Fei Shu & Vincent Larivière, 2022. "Interdisciplinarity and impact: the effects of the citation time window," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2621-2642, May.
    14. Lina Xu & Steven Dellaportas & Jin Wang, 2022. "A study of interdisciplinary accounting research: analysing the diversity of cited references," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 62(2), pages 2131-2162, June.
    15. Kevin M. Kniffin & Andrew S. Hanks, 2017. "Antecedents and near-term consequences for interdisciplinary dissertators," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1225-1250, June.
    16. Kavitha Karunan & Hiran H. Lathabai & Thara Prabhakaran, 2017. "Discovering interdisciplinary interactions between two research fields using citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 335-367, October.
    17. Chen, Shiji & Arsenault, Clément & Larivière, Vincent, 2015. "Are top-cited papers more interdisciplinary?," Journal of Informetrics, Elsevier, vol. 9(4), pages 1034-1046.
    18. Ryo Takahashi & Kenji Kaibe & Kazuyuki Suzuki & Sayaka Takahashi & Kotaro Takeda & Marc Hansen & Michiaki Yumoto, 2023. "New concept of the affinity between research fields using academic journal data in Scopus," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3507-3534, June.
    19. Shengli Deng & Sudi Xia, 2020. "Mapping the interdisciplinarity in information behavior research: a quantitative study using diversity measure and co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 489-513, July.
    20. Kwon, Seokbeom, 2022. "Interdisciplinary knowledge integration as a unique knowledge source for technology development and the role of funding allocation," Technological Forecasting and Social Change, Elsevier, vol. 181(C).

    More about this item

    Keywords

    Universities; Interdisciplinarity; Research centers; Departments; Machine learning;
    All these keywords.

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • I23 - Health, Education, and Welfare - - Education - - - Higher Education; Research Institutions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:118:y:2019:i:3:d:10.1007_s11192-018-2992-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.