IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v116y2018i1d10.1007_s11192-018-2757-z.html
   My bibliography  Save this article

Using the appearance of citations in full text on author co-citation analysis

Author

Listed:
  • Yi Bu

    (Indiana University)

  • Binglu Wang

    (Peking University)

  • Win-bin Huang

    (Peking University)

  • Shangkun Che

    (Peking University)

  • Yong Huang

    (Wuhan University)

Abstract

As a frequently used method of depicting scientific intellectual structures, author co-citation analysis (ACA) has been applied to many domains. However, only count-based information is involved as the input of ACA, which is not sufficiently informative for knowledge representations. This article catches several metadata in full text of citing papers but not aims at content-level information, which increases the amount of information input to ACA without increasing computational complexity a lot. We propose a new method by involving information including the number of mentioned times in a citing paper and the number of context words in a citing sentence. We combine these pieces of information into the traditional ACA and compare the results between ACA and the proposed approach by using factor analysis, network analysis, and MDS-measurement. The result of our empirical study indicates that compared with the traditional ACA, the proposed method shows a better clustering performance in visualizations and reveals more details in displaying intellectual structures.

Suggested Citation

  • Yi Bu & Binglu Wang & Win-bin Huang & Shangkun Che & Yong Huang, 2018. "Using the appearance of citations in full text on author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 275-289, July.
  • Handle: RePEc:spr:scient:v:116:y:2018:i:1:d:10.1007_s11192-018-2757-z
    DOI: 10.1007/s11192-018-2757-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-018-2757-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-018-2757-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Ying & Liu, Xiaozhong & Guo, Chun & Cronin, Blaise, 2013. "The distribution of references across texts: Some implications for citation analysis," Journal of Informetrics, Elsevier, vol. 7(3), pages 583-592.
    2. Staša Milojević & Cassidy R. Sugimoto & Erjia Yan & Ying Ding, 2011. "The cognitive structure of Library and Information Science: Analysis of article title words," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(10), pages 1933-1953, October.
    3. Cassidy R. Sugimoto & Daifeng Li & Terrell G. Russell & S. Craig Finlay & Ying Ding, 2011. "The shifting sands of disciplinary development: Analyzing North American Library and Information Science dissertations using latent Dirichlet allocation," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(1), pages 185-204, January.
    4. Yi Bu & Tian-yi Liu & Win-bin Huang, 2016. "MACA: a modified author co-citation analysis method combined with general descriptive metadata of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(1), pages 143-166, July.
    5. Kim, Ha Jin & Jeong, Yoo Kyung & Song, Min, 2016. "Content- and proximity-based author co-citation analysis using citation sentences," Journal of Informetrics, Elsevier, vol. 10(4), pages 954-966.
    6. Per Ahlgren & Bo Jarneving & Ronald Rousseau, 2003. "Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(6), pages 550-560, April.
    7. Zhao, Dangzhi & Strotmann, Andreas, 2008. "Comparing all-author and first-author co-citation analyses of information science," Journal of Informetrics, Elsevier, vol. 2(3), pages 229-239.
    8. Katherine W. McCain, 1990. "Mapping authors in intellectual space: A technical overview," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 433-443, September.
    9. Xiaodan Zhu & Peter Turney & Daniel Lemire & André Vellino, 2015. "Measuring academic influence: Not all citations are equal," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(2), pages 408-427, February.
    10. Bu, Yi & Ni, Shaokang & Huang, Win-bin, 2017. "Combining multiple scholarly relationships with author cocitation analysis: A preliminary exploration on improving knowledge domain mappings," Journal of Informetrics, Elsevier, vol. 11(3), pages 810-822.
    11. Cassidy R. Sugimoto & Daifeng Li & Terrell G. Russell & S. Craig Finlay & Ying Ding, 2011. "The shifting sands of disciplinary development: Analyzing North American Library and Information Science dissertations using latent Dirichlet allocation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(1), pages 185-204, January.
    12. Amanda Spink & H. Cenk Ozmutlu & Seda Ozmutlu, 2002. "Multitasking information seeking and searching processes," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 53(8), pages 639-652.
    13. Dangzhi Zhao & Andreas Strotmann, 2014. "The knowledge base and research front of information science 2006–2010: An author cocitation and bibliographic coupling analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(5), pages 995-1006, May.
    14. Yang, Siluo & Han, Ruizhen & Wolfram, Dietmar & Zhao, Yuehua, 2016. "Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis," Journal of Informetrics, Elsevier, vol. 10(1), pages 132-150.
    15. Liang-Chu Chen & Yen-Hsuan Lien, 2011. "Using author co-citation analysis to examine the intellectual structure of e-learning: A MIS perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(3), pages 867-886, December.
    16. Jeong, Yoo Kyung & Song, Min & Ding, Ying, 2014. "Content-based author co-citation analysis," Journal of Informetrics, Elsevier, vol. 8(1), pages 197-211.
    17. Staša Milojević & Cassidy R. Sugimoto & Erjia Yan & Ying Ding, 2011. "The cognitive structure of Library and Information Science: Analysis of article title words," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(10), pages 1933-1953, October.
    18. Ding, Ying, 2011. "Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks," Journal of Informetrics, Elsevier, vol. 5(1), pages 187-203.
    19. He, Bing & Ding, Ying & Yan, Erjia, 2012. "Mining patterns of author orders in scientific publications," Journal of Informetrics, Elsevier, vol. 6(3), pages 359-367.
    20. Olle Persson, 2001. "All author citations versus first author citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 50(2), pages 339-344, February.
    21. Donald O. Case & Georgeann M. Higgins, 2000. "How can we investigate citation behavior? A study of reasons for citing literature in communication," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 51(7), pages 635-645.
    22. Ying Ding, 2011. "Topic-based PageRank on author cocitation networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(3), pages 449-466, March.
    23. Chenwei Zhang & Yi Bu & Ying Ding & Jian Xu, 2018. "Understanding scientific collaboration: Homophily, transitivity, and preferential attachment," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(1), pages 72-86, January.
    24. John T. Bruer, 2010. "Can we talk? How the cognitive neuroscience of attention emerged from neurobiology and psychology, 1980–2005," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(3), pages 751-764, June.
    25. Eom, Sean, 2008. "All author cocitation analysis and first author cocitation analysis: A comparative empirical investigation," Journal of Informetrics, Elsevier, vol. 2(1), pages 53-64.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2021. "The use of citation context to detect the evolution of research topics: a large-scale analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2971-2989, April.
    2. Qikai Cheng & Jiamin Wang & Wei Lu & Yong Huang & Yi Bu, 2020. "Keyword-citation-keyword network: a new perspective of discipline knowledge structure analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 1923-1943, September.
    3. Nayak, Bishwajit & Bhattacharyya, Som Sekhar & Krishnamoorthy, Bala, 2022. "Exploring the black box of competitive advantage – An integrated bibliometric and chronological literature review approach," Journal of Business Research, Elsevier, vol. 139(C), pages 964-982.
    4. Dangzhi Zhao & Andreas Strotmann, 2020. "Telescopic and panoramic views of library and information science research 2011–2018: a comparison of four weighting schemes for author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 255-270, July.
    5. Ruhao Zhang & Junpeng Yuan, 2022. "Enhanced author bibliographic coupling analysis using semantic and syntactic citation information," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7681-7706, December.
    6. Mohammad Sahabuddin & Md. Nazmus Sakib & Md. Mahbubur Rahman & Adamu Jibir & Mochammad Fahlevi & Mohammed Aljuaid & Sandra Grabowska, 2023. "The Evolution of FinTech in Scientific Research: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
    7. Paúl Carrión-Mero & Néstor Montalván-Burbano & Fernando Morante-Carballo & Adolfo Quesada-Román & Boris Apolo-Masache, 2021. "Worldwide Research Trends in Landslide Science," IJERPH, MDPI, vol. 18(18), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pin Li & Guoli Yang & Chuanqi Wang, 2019. "Visual topical analysis of library and information science," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1753-1791, December.
    2. Yi Bu & Tian-yi Liu & Win-bin Huang, 2016. "MACA: a modified author co-citation analysis method combined with general descriptive metadata of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(1), pages 143-166, July.
    3. Bu, Yi & Ni, Shaokang & Huang, Win-bin, 2017. "Combining multiple scholarly relationships with author cocitation analysis: A preliminary exploration on improving knowledge domain mappings," Journal of Informetrics, Elsevier, vol. 11(3), pages 810-822.
    4. Jianhua Hou & Xiucai Yang & Chaomei Chen, 2018. "Emerging trends and new developments in information science: a document co-citation analysis (2009–2016)," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 869-892, May.
    5. Dangzhi Zhao & Andreas Strotmann, 2020. "Telescopic and panoramic views of library and information science research 2011–2018: a comparison of four weighting schemes for author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 255-270, July.
    6. Yang, Siluo & Han, Ruizhen & Wolfram, Dietmar & Zhao, Yuehua, 2016. "Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis," Journal of Informetrics, Elsevier, vol. 10(1), pages 132-150.
    7. Yu-Wei Chang, 2018. "Examining interdisciplinarity of library and information science (LIS) based on LIS articles contributed by non-LIS authors," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1589-1613, September.
    8. Jeong, Yoo Kyung & Song, Min & Ding, Ying, 2014. "Content-based author co-citation analysis," Journal of Informetrics, Elsevier, vol. 8(1), pages 197-211.
    9. Jun-Ping Qiu & Ke Dong & Hou-Qiang Yu, 2014. "Comparative study on structure and correlation among author co-occurrence networks in bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1345-1360, November.
    10. Hao Wang & Sanhong Deng & Xinning Su, 2016. "A study on construction and analysis of discipline knowledge structure of Chinese LIS based on CSSCI," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1725-1759, December.
    11. Chaoqun Ni & Cassidy R. Sugimoto & Blaise Cronin, 2013. "Visualizing and comparing four facets of scholarly communication: producers, artifacts, concepts, and gatekeepers," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1161-1173, March.
    12. Bo Wang & Shengbo Liu & Kun Ding & Zeyuan Liu & Jing Xu, 2014. "Identifying technological topics and institution-topic distribution probability for patent competitive intelligence analysis: a case study in LTE technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 685-704, October.
    13. Song Yanhui & Wu Lijuan & Qiu Junping, 2021. "A comparative study of first and all-author bibliographic coupling analysis based on Scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1125-1147, February.
    14. Erjia Yan, 2014. "Topic-based Pagerank: toward a topic-level scientific evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(2), pages 407-437, August.
    15. Wang, Feifei & Jia, Chenran & Wang, Xiaohan & Liu, Junwan & Xu, Shuo & Liu, Yang & Yang, Chenyuyan, 2019. "Exploring all-author tripartite citation networks: A case study of gene editing," Journal of Informetrics, Elsevier, vol. 13(3), pages 856-873.
    16. Ruhao Zhang & Junpeng Yuan, 2022. "Enhanced author bibliographic coupling analysis using semantic and syntactic citation information," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7681-7706, December.
    17. Dangzhi Zhao & Andreas Strotmann, 2020. "Deep and narrow impact: introducing location filtered citation counting," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 503-517, January.
    18. Yosuke Miyata & Emi Ishita & Fang Yang & Michimasa Yamamoto & Azusa Iwase & Keiko Kurata, 2020. "Knowledge structure transition in library and information science: topic modeling and visualization," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 665-687, October.
    19. Kim, Ha Jin & Jeong, Yoo Kyung & Song, Min, 2016. "Content- and proximity-based author co-citation analysis using citation sentences," Journal of Informetrics, Elsevier, vol. 10(4), pages 954-966.
    20. Sabrina Petersohn & Thomas Heinze, 2018. "Professionalization of bibliometric research assessment. Insights from the history of the Leiden Centre for Science and Technology Studies (CWTS)," Science and Public Policy, Oxford University Press, vol. 45(4), pages 565-578.

    More about this item

    Keywords

    Author co-citation analysis; Co-citation analysis; Citation analysis; Bibliometrics; Scientometrics; Mapping knowledge domains;
    All these keywords.

    JEL classification:

    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:116:y:2018:i:1:d:10.1007_s11192-018-2757-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.